Math 254 Spring 2014 Exam 1 Solutions

1. Carefully state the definition of "linear function space". Give two example vector spaces.

A linear function space is the (linear) span of some set of variables. Examples include $\operatorname{Span}(x), \operatorname{Span}(x, y, z), \operatorname{Span}(s, t)$.
2. State whether or not each of the following are defined; if defined state what type of object is the result. Note: " 3 -vector" means "vector from \mathbb{R}^{3} ".
(a) (column 3 -vector)(row 3-vector)

Juxtaposition means matrix multiplication. The result is a 3×3 matrix.
(b) (column 3-vector).(row 3-vector)

- means dot product (of vectors). The result is a scalar.
(c) $($ column 3 -vector $) \times($ row 3 -vector)
\times means cross product (of 3 -vectors only). The result is a 3 -vector.
(d) (3-vector) $+(3$-vector $)$

Two vectors from the same vector space may always be added. The result is a 3 -vector.
(e) $(3 \times 1$ matrix $)+(1 \times 3$ matrix $)$

Matrices of different dimensions may not be added; this sum is not defined.
3. Let $u=(1,1,1,3), v=(-1,0, x, 1)$. Determine all possible x, if any, that make vectors $u, v \in \mathbb{R}^{4}$ orthogonal.
We calculate $u \cdot v=-1+0+x+3=2+x$. The vectors u, v are orthogonal exactly when $u \cdot v=0$, that is when $2+x=0$, or $x=-2$.
4. Let $u=(1,2,3)$. Find any vector v such that $u \times v=(0,0,0)$.

We have $\|u \times v\|=\|u\|\|v\| \sin \theta$, which we want to be $\|(0,0,0)\|=0$. Hence we want $\theta=0$, or v to be parallel to u. Thus any multiple of u will work: v can be $(1,2,3)$ or $(2,4,6)$ or $(-1,-2,-3)$ or $(0,0,0)$.
5. Calculate the matrix product $\left[\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right]\left[\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]$. Hint: it's nice.

We calculate $\left[\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right]\left[\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]=\left[\begin{array}{cc}1 / 4+3 / 4 & -\sqrt{3} / 4+\sqrt{3} / 4 \\ \sqrt{3} / 4-\sqrt{3} / 4 & 3 / 4+1 / 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Later we will learn that this isn't a surprise; we have demonstrated that rotating counterclockwise by an angle of $-\frac{2 \pi}{3}$, followed by rotating counterclockwise by an angle of $\frac{2 \pi}{3}$, is the same as not doing anything at all.

