Math 254 Spring 2014 Exam 2a Solutions

1. Carefully state the definition of the "polynomial space" $P(t)$. Give two example vectors from $P_{1}(t)$.
$P(t)$ is the vector space consisting of all polynomials in the variable t. Two vectors from $P_{1}(t)$ are $3,3+2 t$.
2. List, in any order, the three elementary operations that leave unchanged the solution set to a system of linear equations.
E1: Interchange two equations. E2: Multiply an equation by a nonzero constant.
E3: Add a multiple of one equation to another.
3. Solve the following system of equations using Gaussian elimination and backsubstitution.

$$
2 y-z=1
$$

$$
x-y+z=1 \quad x-y+z=1 \quad x-y+z=1
$$

$$
x-y+z=1 \quad 2 y-z=1 \quad 2 y-z=1 \quad 2 y-z=1
$$

$$
2 x+y+2 z=2 \quad 2 x+y+2 z=2 \quad 3 y+0 z=0 \quad 1.5 z=-1.5
$$

Step 1: $E_{1} \leftrightarrow E_{2}$. Step 2: $-2 E_{1}+E_{3} \rightarrow E_{3}$. Step 3: $-1.5 E_{2}+E_{3} \rightarrow E_{3}$. We now back-substitute: $z=-1$, then $2 y+1=1$ so $y=0$. Lastly $x-0-1=1$ so $x=2$.
4. Consider the system of equations $\{2 x-2 y=4,4 x+a y=b\}$. For which values of a, b does this have exactly one solution (and what is it)? For which values of a, b does this have no solution? For which values of a, b does this have infinitely many solutions?
We solve: $-2 E_{1}+E_{2} \rightarrow E_{2}$ gives us $\{2 x-2 y=4,(4+a) y=(-8+b)\}$, back-substitute $y=\frac{b-8}{a+4}$ and $2 x-2 \frac{b-8}{a+4}=4$ so $x=2+\frac{b-8}{a+4}=\frac{2 a+b}{a+4}$. This is a unique solution, provided $a \neq-4$. If $a=-4$, then the second equation is $0=b-8$. If $a=-4$ and $b=8$, there are infinitely many solutions; if $a=-4$ and $b \neq 8$, then there are no solutions.
5. Find a set of points in the plane that have infinitely many lines of best fit. Be sure to justify your answer.
One solution is any single point, e.g. $\{(2,3)\}$. This gives system $\{b+2 m=3,2 b+4 m=$ $6\}$, which has infinitely many solutions since the second equation is twice the first. Another solution is the empty set, which gives system $\{0 b+0 m=0,0 b+0 m=0\}$. Others are possible, e.g. $\{(0,3),(0,5)\}$, with system $\{2 b+0 m=8,0 b+0 m=0\}$.

