## Math 254 Spring 2014 Exam 3 Solutions

1. Carefully state the definition of "nondegenerate span". Give two sets of vectors from $P_{1}(t)$ : one set called $A$ whose nondegenerate span includes 0 , and one set called $B$ whose nondegenerate span includes everything except 0 .
The nondegenerate span of a set of vectors is the set of all linear combinations of that set, except the degenerate (all-zero) linear combination. $A=\{t, 2 t\}, B=\{1, t\}$ are examples of $A, B$; there are others.
2. Prove that: if $A, B$ are each orthogonal matrices, then $A B$ is also an orthogonal matrix.

Recall that matrix $M$ is orthogonal if $M M^{T}=I$. We compute $(A B)(A B)^{T}=(A B) B^{T} A^{T}=$ $A\left(B B^{T}\right) A^{T}=A I A^{T}=A A^{T}=I$. Hence $A B$ is orthogonal.
The remaining three problems all concern the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]$.
3. Find matrices $B, C$ such that $B$ is skew-symmetric, $C$ is upper triangular, and $A=B+C$.

Since $C$ is zero in the lower left corner, we must have $3,2,0$ in the lower left corner of $B$. Hence $B=\left[\begin{array}{ccc}0 & -3 & -2 \\ 3 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]$, and calculate $C=A-B=\left[\begin{array}{ccc}1 & 4 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
4. Determine whether $A^{-1}$ exists; if yes, find it.
$\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -3 & 1 & 0 \\ 0 & -2 & -2 & -2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -3 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & -1 \\ 0 & -2 & 0 & 0 & -2 & 3 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1.5 \\ 0 & 0 & 1 & 1 & -1 & 1 \\ 1\end{array}\right]$

5. Compute $A^{2}-2 A+I$.

Method 1: $A^{2}=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 0 \\ 2 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}6 & 2 & 1 \\ 6 & 4 & 3 \\ 2 & 2 & 2\end{array}\right] .-2 A=\left[\begin{array}{ccc}-2 & -2 & -2 \\ -6 & -2 & 0 \\ -4 & 0 & 0\end{array}\right] . I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Adding these three matrices gives $A^{2}-2 A+I=\left[\begin{array}{ccc}5 & 0 & -1 \\ 0 & 3 & 3 \\ -2 & 2 & 3\end{array}\right]$.
Method 2: $A^{2}-2 A+I=(A-I)^{2}$. We calculate $A-I=\left[\begin{array}{ccc}0 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & 0 & -1\end{array}\right]$, then square $(A-I)^{2}=$ $\left[\begin{array}{ccc}0 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}0 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}5 & 0 & -1 \\ 0 & 3 & 3 \\ -2 & 2 & 3\end{array}\right]$.

