Math 254 Spring 2014 Exam 5 Solutions

1. Carefully state the definition of "spanning". Give two spanning sets, drawn from $P_{1}(t)$.

A set of vectors, drawn from vector space V, is spanning if its span is the entire space V. Two spanning sets for $P_{1}(t)$ are $\{1, t\}$ and $\{1+t, 1-t, 2+3 t\}$.
2. Give the standard basis for $M_{2,2}$.
$\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ To receive full credit, a solution must be a set containing these four matrices, in this order.

The remaining three problems are all in $V=\mathbb{R}^{4}$. Set $r=(1,1,0,0), s=(0,1,1,0)$, $u=(1,1,1,1), v=(1,0,1,0), w=(0,1,0,1)$. Set $U_{1}=\operatorname{Span}(r, s), U_{2}=\operatorname{Span}(u, v, w)$.
3. Find a basis for U_{1}, and a basis for U_{2}.

Two vectors are dependent if one is a multiple of the other; since neither of r, s is a multiple of the other, then $\{r, s\}$ is independent. Thus $\{r, s\}$ is a minimal spanning set for U_{1}, and hence a basis for U_{1}. This test does NOT work for more than two vectors.
To find a basis for U_{2}, we row reduce $\left(\begin{array}{l}-u- \\ -v- \\ -w-\end{array}\right)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$ via $R_{2}-R_{1} \rightarrow R_{2}, R_{2}+R_{3} \rightarrow R_{3}$. Hence a basis for U_{2} is $\{(1,1,1,1),(0,-1,0,-1)\}$.
Alternate solution: We row reduce $\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ via $R_{2}-R_{1} \rightarrow R_{2}, R_{3}-$ $R_{1} \rightarrow R_{3}, R_{4}-R_{1} \rightarrow R_{4}, R_{4}-R_{2} \rightarrow R_{4}$. The pivots are in the first and second columns, hence the first and second of u, v, w form a basis for U_{2} : namely $\{u, v\}$.
4. Find a basis for $U_{1}+U_{2}$.

We row reduce $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 2\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & -2\end{array}\right)$ via $R_{3}-R_{1} \rightarrow R_{3}, R_{4}-R_{1} \rightarrow R_{4}, R_{4}+R_{2} \rightarrow R_{4}, R_{5}-R_{2} \rightarrow R_{5}, R_{4}-2 R_{3} \rightarrow R_{4}, R_{5}+R_{3} \rightarrow$ $R_{5}, R_{5}+R_{4} \rightarrow R_{4}$. Hence a basis for $U_{1}+U_{2}$ is $\{(1,1,0,0),(0,1,1,0),(0,0,1,1),(0,0,0,-2)\}$.
Alternate solution: row reduce the transpose of the starting matrix. The pivots end up in the first four columns, so a basis is $\{r, s, u, v\}$.
5. Find $\operatorname{dim}\left(U_{1}\right), \operatorname{dim}\left(U_{2}\right), \operatorname{dim}\left(U_{1}+U_{2}\right), \operatorname{dim}\left(U_{1} \cap U_{2}\right)$.

Counting the size of each basis, we find $\operatorname{dim}\left(U_{1}\right)=2, \operatorname{dim}\left(U_{2}\right)=2, \operatorname{dim}\left(U_{1}+U_{2}\right)=4$. Using $\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)=\operatorname{dim}\left(U_{1}+U_{2}\right)+\operatorname{dim}\left(U_{1} \cap U_{2}\right)$, we find $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=0$. This is an example of two planes whose intersection is a single point (namely, $\overline{0}$). This phenomenon is impossible in three dimensions, but possible in 4 or more.

