Math 254 Spring 2014 Exam 5 Solutions

1. Carefully state the definition of "spanning". Give two spanning sets, drawn from $P_1(t)$.

A set of vectors, drawn from vector space V, is spanning if its span is the entire space V. Two spanning sets for $P_1(t)$ are $\{1,t\}$ and $\{1+t, 1-t, 2+3t\}$.

2. Give the standard basis for $M_{2,2}$.

 $\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$ To receive full credit, a solution must be a set containing these four matrices, in this order.

The remaining three problems are all in $V = \mathbb{R}^4$. Set r = (1, 1, 0, 0), s = (0, 1, 1, 0), u = (1, 1, 1, 1), v = (1, 0, 1, 0), w = (0, 1, 0, 1). Set $U_1 = Span(r, s), U_2 = Span(u, v, w)$.

3. Find a basis for U_1 , and a basis for U_2 .

Two vectors are dependent if one is a multiple of the other; since neither of r, s is a multiple of the other, then $\{r, s\}$ is independent. Thus $\{r, s\}$ is a minimal spanning set for U_1 , and hence a basis for U_1 . This test does NOT work for more than two vectors.

To find a basis for U_2 , we row reduce $\begin{pmatrix} -u-\\ -v-\\ -w- \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & -1 & 0 & -1\\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & -1 & 0 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix}$ via $R_2 - R_1 \rightarrow R_2, R_2 + R_3 \rightarrow R_3$. Hence a basis for U_2 is $\{(1, 1, 1, 1), (0, -1, 0, -1)\}$.

Alternate solution: We row reduce $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ via $R_2 - R_1 \rightarrow R_2, R_3 - R_1 \rightarrow R_3, R_4 - R_1 \rightarrow R_4, R_4 - R_2 \rightarrow R_4$. The pivots are in the first and second columns, hence the first and second of u, v, w form a basis for U_2 : namely $\{u, v\}$.

4. Find a basis for $U_1 + U_2$.

We row reduce $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & -2 \end{pmatrix}$ via $R_3 - R_1 \rightarrow R_3, R_4 - R_1 \rightarrow R_4, R_4 + R_2 \rightarrow R_4, R_5 - R_2 \rightarrow R_5, R_4 - 2R_3 \rightarrow R_4, R_5 + R_3 \rightarrow R_5, R_5 + R_4 \rightarrow R_4$. Hence a basis for $U_1 + U_2$ is $\{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, -2)\}$. Alternate solution: row reduce the transpose of the starting matrix. The pivots end up in the first four columns, so a basis is $\{r, s, u, v\}$.

5. Find $dim(U_1), dim(U_2), dim(U_1 + U_2), dim(U_1 \cap U_2)$.

Counting the size of each basis, we find $dim(U_1) = 2$, $dim(U_2) = 2$, $dim(U_1 + U_2) = 4$. Using $dim(U_1) + dim(U_2) = dim(U_1 + U_2) + dim(U_1 \cap U_2)$, we find $dim(U_1 \cap U_2) = 0$. This is an example of two planes whose intersection is a single point (namely, $\overline{0}$). This phenomenon is impossible in three dimensions, but possible in 4 or more.