Math 254 Spring 2014 Exam 6 Solutions

1. Carefully state the definition of "dependent". Give two dependent sets, drawn from $M_{2,3}$.

A set of vectors is dependent if there is a nondegenerate linear combination yielding the zero vector. Three examples: $\left\{\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\},\left\{\left(\begin{array}{lll}1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\},\left\{\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)\right\}$
2. Set $V=\mathbb{R}^{3}$. Consider all subspaces of V. What are the possible dimensions of these subspaces? Give an example subspace, for each possible dimension.
Possible dimensions are $0,1,2,3$. The only 0 -dimensional subspace is $\{(0,0,0)\}$, the zero vector by itself. A 1-dimensional subspace is $\operatorname{Span}(\{(1,3,7)\})$. A two-dimensional subpace is $\operatorname{Span}(\{(1,3,7),(1,2,1)\})$. The only 3 -dimensional subpace is V itself.
3. Set $V=\mathbb{R}^{2}$, and consider the basis $B=\{(1,2),(4,7)\}$. Find the change-of-basis matrix $Q_{B E}$, and use this to find $[(2,1)]_{B}$.
We first write down $Q_{E B}=\left(\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right)$, which has B as its columns. We then have $Q_{B E}=$ $Q_{E B}^{-1}=\left(\begin{array}{cc}-7 & 4 \\ 2 & -1\end{array}\right)$, which we can find using the 2×2 formula or the general algorithm. Lastly, we have $[(2,1)]_{B}=Q_{B E}[(2,1)]_{E}=\left(\begin{array}{cc}-7 & 4 \\ 2 & -1\end{array}\right)\binom{2}{1}=\binom{-10}{3}$
The remaining problems are both in the polynomial vector space $V=\operatorname{Span}(B)$, whose basis is $B=\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$. Consider $U=\operatorname{Span}\left((x+y)^{2},(x-z)^{2},(y-z)^{2}\right)$, a subspace of V.
4. Find the dimension of U.

Note that $\left[(x+y)^{2}\right]_{B}=(1,1,0,2,0,0),\left[(x-z)^{2}\right]_{B}=(1,0,1,0,-2,0),\left[(y-z)^{2}\right]_{B}=$ $(0,1,1,0,0,-2)$. We row reduce $\left(\begin{array}{ccccc}1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & -2 & -2 & 0 \\ 0 & 1 & 1 & 0 & 0 & -2\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 0 & -1 & 1 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 2 & -2 & -2 & -2\end{array}\right)$ via $R_{2}-R_{1} \rightarrow R_{2}$ and $R_{3}+R_{2} \rightarrow R_{3}$. The row echelon form matrix has three pivots, so the dimension of U is 3 .
5. Determine whether or not $(x+y+z)^{2}$ is in U.

Note that $\left[(x+y+z)^{2}\right]_{B}=(1,1,1,2,2,2)$. We row reduce $\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 0 & 0 \\ 0 & -1 & 1 & -2 & -2 \\ 0 & 0 & -2 & 0 \\ 1 & 1 & 1 & 2 & -2 \\ \hline\end{array}\right) \rightarrow$ $\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 & -2 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 2 \\ 2\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & 0 & -2 & -2 \\ 0 & -2 & 3\end{array}\right)$ via $R_{4}-R_{1} \rightarrow R_{4}, R_{4}-\frac{1}{2} R_{3} \rightarrow R_{4}$. The resulting row echelon matrix has four pivots, so $(x+y+z)^{2}$ is not in U. If you like you may also begin with $\left(\begin{array}{cccccc}1 & 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 & 0 & -2 \\ 1 & 1 & 1 & 2 & 2 & 2\end{array}\right)$, which gets to the same place but takes a bit longer.

