Math 254 Spring 2014 Exam 7 Solutions

1. Carefully state the definition of "basis". Give two bases for $P_{2}(t)$.

A basis is a set of vectors that is linearly independent and spanning. Examples include $\left\{1, t, t^{2}\right\},\left\{1,2 t, 3 t^{3}\right\},\left\{1,1+t, 1+t+t^{2}\right\}$.
2. Let u, v be nonzero vectors in an arbitrary inner product space. Prove that if u is orthogonal to v then $\operatorname{proj}(u, v)=\overline{0}$.

If u is orthogonal to v then $\langle u, v\rangle=0$. We have $\operatorname{proj}(u, v)=\frac{\langle u, v\rangle}{\langle v, v\rangle} v=\frac{0}{\langle v, v\rangle} v=0 v=\overline{0}$.
The remaining three problems are all in vector space $V=\mathbb{R}^{2}$, with inner product $\langle\cdot, \cdot\rangle_{\star}$ given by $\langle u, v\rangle_{\star}=u^{T}\left(\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right) v$. (here u, v are column vectors).
3. Let $a=(1,1)^{T}$ and $b=(-1,3)^{T}$. Calculate $\langle a, a\rangle_{\star},\langle a, b\rangle_{\star},\langle b, b\rangle_{\star}$.

We have $\langle a, a\rangle_{\star}=\left(\begin{array}{ll}1 & 1\end{array}\right)\left(\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right)\binom{1}{1}=9,\langle a, b\rangle_{\star}=\left(\begin{array}{ll}1 & 1\end{array}\right)\left(\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right)\binom{-1}{3}=7$, $\langle b, b\rangle_{\star}=\left(\begin{array}{ll}-1 & 3\end{array}\right)\left(\begin{array}{c}4 \\ 1\end{array} \frac{1}{2}\right)\binom{-1}{3}=25$.
4. Let $a=(1,1)^{T}$ and $b=(-1,3)^{T}$. Find vectors c, d such that $a=c+d, c$ is a multiple of b, and d is orthogonal to b (in the $\langle\cdot, \cdot\rangle_{\star}$ sense).

We take $c=\operatorname{Proj}(a, b)=\frac{\langle a, b\rangle_{\star}}{\langle b, b\rangle_{\star}} b=\frac{7}{25} b=\left(\frac{-7}{25}, \frac{21}{25}\right)^{T}$. We now calculate $d=a-c=$ $(1,1)^{T}-\left(\frac{-7}{25}, \frac{21}{25}\right)^{T}=\left(\frac{32}{25}, \frac{4}{25}\right)^{T}$.
It's not necessary, but we can check that $\langle d, b\rangle_{\star}=\left(\frac{32}{25} \frac{4}{25}\right)\left(\begin{array}{c}4 \\ 1 \\ 1\end{array} \frac{1}{3}\right)\binom{-1}{3}=0$.
5. Starting with $\left\{(1,0)^{T},(0,1)^{T}\right\}$, use Gram-Schmidt to find an orthonormal basis for V (in the $\langle\cdot, \cdot\rangle_{\star}$ sense).
We have $f_{1}=e_{1}$, and compute $f_{2}=e_{2}-\operatorname{Proj}\left(e_{2}, e_{1}\right)=e_{2}-\frac{\left\langle e_{2}, e_{1}\right\rangle_{\star}}{\left\langle e_{1}, e_{1}\right\rangle_{\star}} e_{1}=e_{2}-\frac{1}{4} e_{1}=$ $\left(-\frac{1}{4}, 1\right)$; hence an orthogonal basis is $\left\{f_{1}, f_{2}\right\}=\left\{(1,0),\left(-\frac{1}{4}, 1\right)\right\}$. To normalize we need $\left\|f_{1}\right\|_{\star}=\sqrt{\left\langle f_{1}, f_{1}\right\rangle_{\star}}=\sqrt{4}=2$ and $\left\|f_{2}\right\|_{\star}=\sqrt{\left\langle f_{2}, f_{2}\right\rangle_{\star}}=\sqrt{\frac{11}{4}}=\frac{\sqrt{11}}{2}$. Combining, we get orthonormal basis $\left\{\frac{f_{1}}{\left\|f_{1}\right\|_{\star}}, \frac{f_{2}}{\left\|f_{2}\right\|_{\star}}\right\}=\left\{\left(\frac{1}{2}, 0\right),\left(-\frac{1}{2 \sqrt{11}}, \frac{2}{\sqrt{11}}\right)\right\}$.

