Math 254 Spring 2014 Exam 8 Solutions

1. Carefully state the definition of the "standard vector space" \mathbb{R}^{n}. Give a set of two vectors from \mathbb{R}^{4}.
\mathbb{R}^{n} is the set of all ordered n-tuples (or lists) of real numbers. A possible set requested is $\{(1,2,3,4),(4,3,2,1)\}$.
2. Let F, G be the linear mappings on \mathbb{R}^{2} defined by $F(x, y)=(y, x+y)$ and $G(x, y)=$ $(0,2 x)$. Find formulas defining the mappings: (a) $F+G$; (b) $2 F-G$; (c) $F G$; (d) $G F$; (e) F^{2}

Note that in all cases solutions will be functions from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) $(F+G)(x, y)=(y, 3 x+y)$; (b) $(2 F-3 G)(x, y)=(2 y, 2 y) ;($ c) $(F G)(x, y)=$ $F(G(x, y))=F(0,2 x)=(2 x, 2 x) ;(\mathrm{d})(G F)(x, y)=G(F(x, y))=G(y, x+y)=(0,2 y)$;
(e) $F^{2}(x, y)=F(F(x, y))=F(y, x+y)=(x+y, x+2 y)$

The remaining three problems are all in vector space $V=\mathbb{R}^{2}$, with function $F: V \rightarrow V$ given by $F(x, y)=(x+2 y, 3 x+4 y)$.
3. Prove that F satisfies the definition of a linear mapping.

We need to prove two properties for F :

1) $F\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right)=F\left(x+x^{\prime}, y+y^{\prime}\right)=\left(x+x^{\prime}+2\left(y+y^{\prime}\right), 3\left(x+x^{\prime}\right)+4\left(y+y^{\prime}\right)\right)=$ $(x+2 y, 3 x+4 y)+\left(x^{\prime}+2 y^{\prime}, 3 x^{\prime}+4 y^{\prime}\right)=F(x, y)+F\left(x^{\prime}, y^{\prime}\right)$
2) $F(k(x, y))=F(k x, k y)=(k x+2 k y, 3 k x+4 k y)=k(x+2 y, 2 x+4 y)=k F(x, y)$
4. Find the rank and nullity of F.

You need any two of the following three ideas:
Nullity: If $F(x, y)=(0,0)$ then $(x+2 y, 3 x+4 y)=(0,0)$ which gives two equations $x+2 y=0,3 x+4 y=0$. These have unique solution $x=y=0$, so the kernel of F is 0 -dimensional and the nullity is 0 .
Rank: $F(1,0)=(1,3)$ and $F(0,1)=(2,4)$. The rank of F is the dimension of $\operatorname{Span}(S)$, for $S=\{(1,3),(2,4)\}$. Since S is independent, the rank of F is 2 .
Rank-Nullity Theorem: The domain of F is \mathbb{R}^{2}, which has dimension 2, so the rank of F plus the nullity of F equals 2 .
5. Determine whether F is an isomorphism, and if so find its inverse.

Because the nullity of F is $0, F$ is an isomorphism. Here are two ways to finish:
Method 1: We want $(r, s)=(x+2 y, 3 x+4 y)$, or $x+2 y=r, 3 x+4 y=s$. We solve these to get $x=s-2 r, y=\frac{3 r-s}{2}$, so $F^{-1}(r, s)=\left(s-2 r, \frac{3 r-s}{2}\right)$.
Method 2: $F(x, y)=A(x, y)^{T}$, for $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Hence $F^{-1}(x, y)=A^{-1}(x, y)^{T}$. We calculate $A^{-1}=\frac{1}{-2}\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right)=\left(\begin{array}{cc}-2 & 1 \\ 1.5 & -0.5\end{array}\right)$, so $F^{-1}(x, y)=(-2 x+y, 1.5 x-0.5 y)$.

