
MATH 521A: Abstract Algebra
Homework 1 Solutions

1. Prove that (−N0), the set of nonpositive integers, is well-ordered.

Method 1: We know that Z is well-ordered by 0, by a theorem from class. Since
(−N0) ⊆ Z, we apply the lemma from class and conclude that (−N0) is also well-
ordered by 0.

Method 2: We define a “backwards” order via: a l b if |a| < |b| (i.e. a > b). Let
S ⊆ (−N0). The image of S under the absolute value map is in N0, which is well-
ordered. Hence there is some element t in that image that is minimal. But then
|t| < |x| for all x ∈ S, i.e. tl x. So t is minimal and (−N0) is well-ordered by l.

For a set T , we say it is inductively ordered if there is some special t ∈ T and some
function f : T → T such that:
(1) The elements t, f(t), f(f(t)), . . . are all distinct; and
(2) T = {t, f(t), f(f(t)), . . .}.

2. Prove that N0 is inductively ordered.

We take t = 0 and S(x) = x + 1. Then {t, f(t), f(f(t)), . . .} = {0, 1, 2, . . .} = N0.

3. Prove that if a set is inductively ordered then it is well-ordered.

Each element of T is f (n)(t), for some n ∈ N0. We define an order on T by comparing
“exponents”, i.e. via f (n)(t) l f (m)(t) if n < m. For S ⊆ T , the exponents of the
elements of S are a subset of N0, and hence have a minimal element n?. Now for
any s ∈ S, either s = f (n?)(t) or f (n?)(t) l s, so f (n?)(t) is minimal in S. Thus T is
well-ordered by l.

4. Prove that the square of any integer a is either of the form 4k or of the form 4k + 1 for
some integer k.

Let a ∈ Z. By the division algorithm, there are integers q, r such that a = 4q + r, with
0 ≤ r < 4. Squaring, we get a2 = (4q + r)2 = 16q2 + 8qr + r2 = 4(4q2 + 2qr) + r2. If
r = 0 or r = 1, we are done. If r = 2 then a2 = 4(4q2 + 2qr + 1) + 0, and if r = 3 then
a2 = 4(4q2 + 2qr) + 9 = 4(4q2 + 2qr + 2) + 1.

5. Prove the Backwards Division Algorithm: Let a, b be integers with b > 0. Then there
exist integers q, r such that a = bq + r with −b < r ≤ 0.

We mimic the proof of Thm 1.1. Set S = {a − bx : x ∈ Z, a − bx ≥ 1}. In Thm 1.1
it was proved that there is some x ∈ Z such that a − bx ≥ 0. Adding b to both sides
a−bx+b ≥ b ≥ 1, so S is nonempty since it contains a−b(x−1). Apply Well-Ordering
Axiom to get minimal r′ ∈ S. We have, for some integer q′, r′ = a − bq′ ≥ 1. We
subtract b from both sides to get r′ − b = a − b(q′ + 1) ≥ 1 − b. Set r = r′ − b and
q = q′ + 1. We have r = a − bq, or a = bq + r. If r > 0 then r′ > b so in fact r′ was
not minimal in S since r′ − b ∈ S. Hence −b < r ≤ 0. We were not asked to prove
uniqueness, but it can be done similarly to the proof of Thm 1.1.



6. Let a, b ∈ N with a|b. Prove that a ≤ b.

Method 1: We use x ≥ y if x − y ≥ 0. There is some c ∈ N with b = ac. Hence
b− a = ac− a = a(c− 1). Since a, c− 1 are each in N0, their product is in N0 and so
b ≥ a.

Method 2: We use x ≥ y if x
y
≥ 1. There is some c ∈ N with b = ac. Hence b

a
= c ∈ N.

Hence b
a
≥ 1, so b ≥ a.

7. Let a, b be nonzero integers with a|b and b|a. Prove that a = ±b.

Since a|b there is some integer c with b = ca. Since b|a there is some integer f with
a = fb. Substituting, we get b = c(fb) and so 1 = cf . Suppose for the moment that
c, f are both positive. We have c|1, so by exercise 6, c ≤ 1. Thus c = 1 = f . If c, f are
not both positive, they are both negative. However |c| · |f | = 1 so again |c| is a natural
number dividing 1, and thus |c| = 1, so c = −1 = f . Hence c = ±1 and so b = ±a.

8. Let a, b ∈ Z, not both zero, and let d = gcd(a, b). Prove that d divides each element of
S = {am + bn : m,n ∈ Z}.

We have a = da′, b = db′ for some integers a′, b′. We have am + bn = da′m + db′n =
d(a′m + b′n), so d|(am + bn).

9. Use the Euclidean Algorithm to find gcd(175, 630) and to express this as a linear
combination of 175, 630.

Step 1: 630 = 3 · 175 + 105. Step 2: 175 = 1 · 105 + 70. Step 3: 105 = 1 · 70 + 35
Since 35|70 we know 35 is the gcd. Now we reverse, back-substituting as we go.
35 = 1·105−1·70 = 1·105−1·(1·175−1·105) = 2·105−1·175 = 2·(630−3·175)−1·175 =
2 · 630− 7 · 175.

10. Prove that gcd(a, b) = gcd(a, b + at), for every t ∈ Z.

Method 1: Fix t and for convenience, set d = gcd(a, b), c = gcd(a, b + at). Since
d|a and d|b, there are integers a′, b′ with a = da′, b = db′. So b + at = db′ + da′t =
d(b′ + a′t), so d|(b + at) and hence d|c by Cor. 1.3. Similarly, there are a′′, f such that
a = a′′c, b + at = fc. Hence (b + at) − at = fc − a′′ct = c(f − a′′t). Hence c|b and so
c|d. By exercise 7, c = ±d, so c = d since gcd’s are always positive.

Method 2: We have gcd(a, b) dividing a, and also (by Exercise 8) gcd(a, b + at), since
b + at is a linear combination of a, b. But we can do this the other way, since a =
(−t)a + 1(b + at), so gcd(a, b + at) divides both a and b, so gcd(a, b + at) divides
gcd(a, b). Now apply exercise 7 as in method 1.


