MATH 521A: Abstract Algebra

Homework 1 Solutions

1. Prove that $\left(-\mathbb{N}_{0}\right)$, the set of nonpositive integers, is well-ordered.

Method 1: We know that \mathbb{Z} is well-ordered by $₹$, by a theorem from class. Since $\left(-\mathbb{N}_{0}\right) \subseteq \mathbb{Z}$, we apply the lemma from class and conclude that $\left(-\mathbb{N}_{0}\right)$ is also wellordered by $₹$.
Method 2: We define a "backwards" order via: $a \lessdot b$ if $|a|<|b|$ (i.e. $a>b$). Let $S \subseteq\left(-\mathbb{N}_{0}\right)$. The image of S under the absolute value map is in \mathbb{N}_{0}, which is wellordered. Hence there is some element t in that image that is minimal. But then $|t|<|x|$ for all $x \in S$, i.e. $t \lessdot x$. So t is minimal and $\left(-\mathbb{N}_{0}\right)$ is well-ordered by \lessdot.
For a set T, we say it is inductively ordered if there is some special $t \in T$ and some function $f: T \rightarrow T$ such that:
(1) The elements $t, f(t), f(f(t)), \ldots$ are all distinct; and
(2) $T=\{t, f(t), f(f(t)), \ldots\}$.
2. Prove that \mathbb{N}_{0} is inductively ordered.

We take $t=0$ and $S(x)=x+1$. Then $\{t, f(t), f(f(t)), \ldots\}=\{0,1,2, \ldots\}=\mathbb{N}_{0}$.
3. Prove that if a set is inductively ordered then it is well-ordered.

Each element of T is $f^{(n)}(t)$, for some $n \in \mathbb{N}_{0}$. We define an order on T by comparing "exponents", i.e. via $f^{(n)}(t) \lessdot f^{(m)}(t)$ if $n<m$. For $S \subseteq T$, the exponents of the elements of S are a subset of \mathbb{N}_{0}, and hence have a minimal element n^{\star}. Now for any $s \in S$, either $s=f^{\left(n^{\star}\right)}(t)$ or $f^{\left(n^{\star}\right)}(t) \lessdot s$, so $f^{\left(n^{\star}\right)}(t)$ is minimal in S. Thus T is well-ordered by \lessdot.
4. Prove that the square of any integer a is either of the form $4 k$ or of the form $4 k+1$ for some integer k.
Let $a \in \mathbb{Z}$. By the division algorithm, there are integers q, r such that $a=4 q+r$, with $0 \leq r<4$. Squaring, we get $a^{2}=(4 q+r)^{2}=16 q^{2}+8 q r+r^{2}=4\left(4 q^{2}+2 q r\right)+r^{2}$. If $r=0$ or $r=1$, we are done. If $r=2$ then $a^{2}=4\left(4 q^{2}+2 q r+1\right)+0$, and if $r=3$ then $a^{2}=4\left(4 q^{2}+2 q r\right)+9=4\left(4 q^{2}+2 q r+2\right)+1$.
5. Prove the Backwards Division Algorithm: Let a, b be integers with $b>0$. Then there exist integers q, r such that $a=b q+r$ with $-b<r \leq 0$.
We mimic the proof of Thm 1.1. Set $S=\{a-b x: x \in \mathbb{Z}, a-b x \geq 1\}$. In Thm 1.1 it was proved that there is some $x \in \mathbb{Z}$ such that $a-b x \geq 0$. Adding b to both sides $a-b x+b \geq b \geq 1$, so S is nonempty since it contains $a-b(x-1)$. Apply Well-Ordering Axiom to get minimal $r^{\prime} \in S$. We have, for some integer $q^{\prime}, r^{\prime}=a-b q^{\prime} \geq 1$. We subtract b from both sides to get $r^{\prime}-b=a-b\left(q^{\prime}+1\right) \geq 1-b$. Set $r=r^{\prime}-b$ and $q=q^{\prime}+1$. We have $r=a-b q$, or $a=b q+r$. If $r>0$ then $r^{\prime}>b$ so in fact r^{\prime} was not minimal in S since $r^{\prime}-b \in S$. Hence $-b<r \leq 0$. We were not asked to prove uniqueness, but it can be done similarly to the proof of Thm 1.1.
6. Let $a, b \in \mathbb{N}$ with $a \mid b$. Prove that $a \leq b$.

Method 1: We use $x \geq y$ if $x-y \geq 0$. There is some $c \in \mathbb{N}$ with $b=a c$. Hence $b-a=a c-a=a(c-1)$. Since $a, c-1$ are each in \mathbb{N}_{0}, their product is in \mathbb{N}_{0} and so $b \geq a$.
Method 2: We use $x \geq y$ if $\frac{x}{y} \geq 1$. There is some $c \in \mathbb{N}$ with $b=a c$. Hence $\frac{b}{a}=c \in \mathbb{N}$. Hence $\frac{b}{a} \geq 1$, so $b \geq a$.
7. Let a, b be nonzero integers with $a \mid b$ and $b \mid a$. Prove that $a= \pm b$.

Since $a \mid b$ there is some integer c with $b=c a$. Since $b \mid a$ there is some integer f with $a=f b$. Substituting, we get $b=c(f b)$ and so $1=c f$. Suppose for the moment that c, f are both positive. We have $c \mid 1$, so by exercise $6, c \leq 1$. Thus $c=1=f$. If c, f are not both positive, they are both negative. However $|c| \cdot|f|=1$ so again $|c|$ is a natural number dividing 1 , and thus $|c|=1$, so $c=-1=f$. Hence $c= \pm 1$ and so $b= \pm a$.
8. Let $a, b \in \mathbb{Z}$, not both zero, and let $d=\operatorname{gcd}(a, b)$. Prove that d divides each element of $S=\{a m+b n: m, n \in \mathbb{Z}\}$.
We have $a=d a^{\prime}, b=d b^{\prime}$ for some integers a^{\prime}, b^{\prime}. We have $a m+b n=d a^{\prime} m+d b^{\prime} n=$ $d\left(a^{\prime} m+b^{\prime} n\right)$, so $d \mid(a m+b n)$.
9. Use the Euclidean Algorithm to find $\operatorname{gcd}(175,630)$ and to express this as a linear combination of 175,630 .
Step 1: $630=3 \cdot 175+105$. Step 2: $175=1 \cdot 105+70 . \quad$ Step 3: $105=1 \cdot 70+35$ Since $35 \mid 70$ we know 35 is the gcd. Now we reverse, back-substituting as we go.
$35=1 \cdot 105-1 \cdot 70=1 \cdot 105-1 \cdot(1 \cdot 175-1 \cdot 105)=2 \cdot 105-1 \cdot 175=2 \cdot(630-3 \cdot 175)-1 \cdot 175=$ $2 \cdot 630-7 \cdot 175$.
10. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+a t)$, for every $t \in \mathbb{Z}$.

Method 1: Fix t and for convenience, set $d=\operatorname{gcd}(a, b), c=\operatorname{gcd}(a, b+a t)$. Since $d \mid a$ and $d \mid b$, there are integers a^{\prime}, b^{\prime} with $a=d a^{\prime}, b=d b^{\prime}$. So $b+a t=d b^{\prime}+d a^{\prime} t=$ $d\left(b^{\prime}+a^{\prime} t\right)$, so $d \mid(b+a t)$ and hence $d \mid c$ by Cor. 1.3. Similarly, there are $a^{\prime \prime}, f$ such that $a=a^{\prime \prime} c, b+a t=f c$. Hence $(b+a t)-a t=f c-a^{\prime \prime} c t=c\left(f-a^{\prime \prime} t\right)$. Hence $c \mid b$ and so $c \mid d$. By exercise $7, c= \pm d$, so $c=d$ since gcd's are always positive.
Method 2: We have $\operatorname{gcd}(a, b)$ dividing a, and also (by Exercise 8) $\operatorname{gcd}(a, b+a t)$, since $b+a t$ is a linear combination of a, b. But we can do this the other way, since $a=$ $(-t) a+1(b+a t)$, so $\operatorname{gcd}(a, b+a t)$ divides both a and b, so $\operatorname{gcd}(a, b+a t)$ divides $\operatorname{gcd}(a, b)$. Now apply exercise 7 as in method 1 .

