MATH 521A: Abstract Algebra

Homework 1: Due Aug. 31

1. Prove that $\left(-\mathbb{N}_{0}\right)$, the set of nonpositive integers, is well-ordered.

For a set T, we say it is inductively ordered if there is some special $t \in T$ and some function $f: T \rightarrow T$ such that:
(1) The elements $t, f(t), f(f(t)), \ldots$ are all distinct; and
(2) $T=\{t, f(t), f(f(t)), \ldots\}$.
2. Prove that \mathbb{N}_{0} is inductively ordered.
3. Prove that if a set is inductively ordered then it is well-ordered.
4. Prove that the square of any integer a is either of the form $4 k$ or of the form $4 k+1$ for some integer k.
5. Prove the Backwards Division Algorithm: Let a, b be integers with $b>0$. Then there exist integers q, r such that $a=b q+r$ with $-b<r \leq 0$.
6. Let $a, b \in \mathbb{N}$ with $a \mid b$. Prove that $a \leq b$.
7. Let a, b be nonzero integers with $a \mid b$ and $b \mid a$. Prove that $a= \pm b$.
8. Let $a, b \in \mathbb{Z}$, not both zero, and let $d=\operatorname{gcd}(a, b)$. Prove that d divides each element of $S=\{a m+b n: m, n \in \mathbb{Z}\}$.
9. Use the Euclidean Algorithm to find $\operatorname{gcd}(175,630)$ and to express this gcd as a linear combination of 175,630 .
10. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+a t)$, for every $t \in \mathbb{Z}$.

Warning: For these problems, do not use the Fundamental Theorem of Arithmetic (unique factorization of integers into primes).

