MATH 521A: Abstract Algebra

Homework 10 Solutions

1. Prove that $(6,15,27)=(3)$ in \mathbb{Z}.

We have $(6,15,27) \subseteq(3)$ since $6=2 \cdot 3,15=5 \cdot 3$, and $27=9 \cdot 3$. We also have $(6,15,27) \supseteq(3)$ because $12=2 \cdot 6 \in(6,15,27)$ and hence $3=15-12 \in(6,15,27)$.
2. Find all ideals of \mathbb{Z}_{12}. Determine which of these are principal, maximal, and prime.

The principal ideals are $(0)=\{0\},(1)=(5)=(7)=(11)=\mathbb{Z}_{12},(2)=(10)=\{0,2,4,6,8,10\}$, $(3)=(9)=\{0,3,6,9\},(4)=(8)=\{0,4,8\}$, and $(6)=\{0,6\}$. There are no nonprincipal ideals. [Proof: compose $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{12}, \pi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12} / I$ to get a ring homomorphism, whose kernel is an ideal in \mathbb{Z}, which is principal since \mathbb{Z} is a PID.] Of these, (2) and (3) are both maximal and prime.
3. Suppose I, J are ideals of some ring R. Prove that $I \cap J$ and $I+J$ are both ideals of R.
$I \cap J$: Let $x, y \in I \cap J$. The $x+y, x y,-x$ are all in both I, J, so in $I \cap J$. Also $0 \in I \cap J$, so $I \cap J$ is a subring. Let $r \in R$. We have $x r$ in both I, J, so in $I \cap J$. Hence $(I \cap J) R \subseteq(I \cap J)$.
$I+J$: Let $a+b, a^{\prime}+b^{\prime} \in I+J$, for some $a, a^{\prime} \in I, b, b^{\prime} \in J .(a+b)+\left(a^{\prime}+b^{\prime}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \in I+J$. $(a+b)\left(a^{\prime}+b^{\prime}\right)=a\left(a^{\prime}+b^{\prime}\right)+b\left(a^{\prime}+b^{\prime}\right) \in I+J$ (since I, J ideals). $-(a+b)=(-a)+(-b) \in I+J$. $0=0+0 \in I+J$. Hence $I+J$ is a subring. Let $r \in R$. We have $(a+b) r=a r+b r \in I+J$. Hence $I+J$ is an ideal.
4. Let R be a field. Prove that its only ideals are (0) and R.

Let I be an ideal. If I contains no nonzero element, then $I=(0)$. Otherwise, let $x \in I$ be nonzero. Let $y \in R$ be arbitrary. $x^{-1} y \in R$, so $x\left(x^{-1} y\right)=y \in I$. Hence $I=R$.
5. Let R be a ring, and $a \in R$. Set $I=\{b \in R: a b=0\}$. Prove that I is an ideal of R.

Let $b, b^{\prime} \in I$. We have $a\left(b+b^{\prime}\right)=a b+a b^{\prime}=0+0=0$, so $b+b^{\prime} \in I$. We have $a\left(b b^{\prime}\right)=(a b) b^{\prime}=0$, so $b b^{\prime} \in I$. We have $a(-b)=-(a b)=0$, so $-b \in I$. We have $a 0=0$, so $0 \in I$. Hence I is a subring of R. Let $r \in R$. We have $a(b r)=(a b) r=0$, so $b r \in I$. Hence I is an ideal.
6. Calculate simple forms for the elements of the ideal $I=(6 x, 10)$ in $R=\mathbb{Z}[x]$. Is it principal? Maximal? Prime?

Note that $2 x=2 \cdot 6 x-x \cdot 10 \in I$. Hence $I \subseteq(2 x, 10)$. But also $6 x=3 \cdot 2 x$, so in fact $I=(2 x, 10)$. Thus a simple form for $I=\left\{10 a_{0}+2 a_{1} x+2 a_{2} x^{2}+\cdots+2 a_{n} x^{n}: a_{i} \in \mathbb{Z}\right\}$. We calculate $R / I=\left\{b_{0}+b_{1} x+\cdots+b_{n} x^{n}+I\right.$: $\left.b_{0} \in[0,9], b_{i} \in\{0,1\}\right\}$. This is not an integral domain, as $2+I, 5+I \in R / I$ yet $(2+I)(5+I)=0+I$. Hence I is neither maximal nor prime. It is also not principal; to contain 10 it would have to be (a) for some integer a. The only such principal ideals containing $2 x$ are $a \in\{2,-1,1,2\}$, and all of these are bigger than I.
7. Calculate simple forms for the elements of the ideal $I=(6 x, 10 x)$ in $R=\mathbb{Z}[x]$. Is it principal? Maximal? Prime?
Note that $2 x=2 \cdot 6 x-1 \cdot 10 x$, so $(2 x) \subseteq I$. But also $6 x=3 \cdot 2 x$ and $10 x=5 \cdot 2 x$, so in fact $I=(2 x)$. Thus I is principal. Now, $2 x \in I$, but $2 \notin I$ and $x \notin I$. Hence I is not prime, and thus not maximal.
8. Prove that $\mathbb{Z} / 20 \mathbb{Z} \cong \mathbb{Z}_{20}$. Some people prefer to write $\mathbb{Z} / 20 \mathbb{Z}$ instead of \mathbb{Z}_{20}.

Consider the surjective ring homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{20}$ given by $\phi(x)=[x]_{20}$. The kernel is $\{x \in \mathbb{Z}:[x]=$ $[0]\}=20 \mathbb{Z}$. We are now done by the First Isomorphism Theorem.
9. Let I, K be ideals in R, with $K \subseteq I$. Prove that $I / K=\{x+K: x \in I\}$ is an ideal in $R / K=\{x+K: x \in R\}$. I / K is a ring, contained in the ring R / K; hence it is a subring. Now, let $a+K \in I / K$ and $r+K \in R / K$. We have $(a+K)(r+K)=a r+a K+r K+K K$. Since K is an ideal, $a K+r K+K K \subseteq K$, so $(a+K)(r+K)=a r+K$. Since I is an ideal, $a r=b$ for some $b \in I$. Hence $(a+K)(r+K)=b+K \in I / K$.

