MATH 521A: Abstract Algebra

Homework 2 Solutions

1. Find all primes between 1000 and 1050 .

There are eight: $1009,1013,1019,1021,1031,1033,1039,1049$.
2. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ where p_{1}, \ldots, p_{k} are distinct positive prime integers, and each $r_{i}, s_{i} \in \mathbb{N}_{0}$. Prove that $a \mid b$ if and only if $\forall i \in[1, k], r_{i} \leq s_{i}$.
\rightarrow : Suppose $a \mid b$. Then $\frac{b}{a} \in \mathbb{N}$. But $\frac{b}{a}=p_{1}^{s_{1}-r_{1}} p_{2}^{s_{2}-r_{2}} \cdots p_{k}^{s_{k}-r_{k}}$. If any exponent is negative, $\frac{b}{a}$ could not be an integer because the primes are all distinct, so that prime power in the denominator will not cancel with anything else. Hence each exponent is nonnegative, so $s_{i} \geq r_{i}$ for all $i \in[1, k]$.
\leftarrow : Suppose $\forall i \in[1, k], r_{i} \leq s_{i}$. Then $c=p_{1}^{s_{1}-r_{1}} p_{2}^{s_{2}-r_{2}} \cdots p_{k}^{s_{k}-r_{k}}$ is an integer, and we calculate $a c=b$, so $a \mid b$.
3. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ where p_{1}, \ldots, p_{k} are distinct positive prime integers, and each $r_{i}, s_{i} \in \mathbb{N}_{0}$. Determine, with proof, the prime factorization of $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.
Set $d=p_{1}^{\min \left(r_{1}, s_{1}\right)} p_{2}^{\min \left(r_{2}, s_{2}\right)} \cdots p_{k}^{\min \left(r_{k}, s_{k}\right)}$. Since $\min \left(r_{i}, s_{i}\right) \leq r_{i}$ and $\min \left(r_{i}, s_{i}\right) \leq s_{i}$, we apply Problem 2 and conclude that $d \mid a$ and $d \mid b$. Hence d is a common divisor of a, b. Suppose that c is some other common divisor, i.e. $c \mid a$ and $c \mid b$. By problem 2 again, we may write $c=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$ with $t_{i} \leq r_{i}$ and $t_{i} \leq s_{i}$ for all i. Hence $t_{i} \leq \min \left(r_{i}, s_{i}\right)$, so by problem 2 a third time, $c \mid d$. Thus $d=\operatorname{gcd}(a, b)$ by Cor 1.3.

Set $e=p_{1}^{\max \left(r_{1}, s_{1}\right)} p_{2}^{\max \left(r_{2}, s_{2}\right)} \cdots p_{k}^{\max \left(r_{k}, s_{k}\right)}$. Since $\max \left(r_{i}, s_{i}\right) \geq r_{i}$ and $\max \left(r_{i}, s_{i}\right) \geq s_{i}$, we apply Problem 2 and conclude that $a \mid e$ and $b \mid e$. Hence e is a common multiple of a, b. Suppose that c is some other common multiple, i.e. $a \mid c$ and $b \mid c$. By problem 2 again, we may write $c=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$ with $t_{i} \geq r_{i}$ and $t_{i} \geq s_{i}$ for all i. Hence $t_{i} \geq \max \left(r_{i}, s_{i}\right)$, so by problem 2 a third time, $e \mid c$. Thus $d=\operatorname{lcm}(a, b)$ by a theorem from class.
4. Let $a, b, m, n \in \mathbb{N}$. Prove that $a^{m} \mid b^{m}$ if and only if $a^{n} \mid b^{n}$.

Let $\left\{p_{1}, p_{2}, \ldots p_{k}\right\}$ be the set of all (distinct) positive primes that divide a, b, or both. By the FTA (Thm. 1.8) we may write a, b as in problem 2. In particular, $a^{m}=p_{1}^{m r_{1}} p_{2}^{m r_{2}} \cdots p_{k}^{m r_{k}}$, with b^{m}, a^{n}, b^{n} similarly. Suppose that $a^{m} \mid b^{m}$. By problem 2, we conclude that for all $i, m r_{i} \leq m s_{i}$. Hence $r_{i} \leq s_{i}$, and also $n r_{i} \leq n s_{i}$. By problem 2 again, we conclude that $a^{n} \mid b^{n}$. The reverse direction is similar (suppose $a^{n} \mid b^{n}$, apply problem 2 to get $\forall i n r_{i} \leq n s_{i}$, use algebra to get $m r_{i} \leq m s_{i}$, apply problem 2 again to get $\left.a^{m} \mid b^{m}\right)$.
5. Prove that, for all $n \geq 2$, there are no primes among $\{n!+2, n!+3, \ldots, n!+n\}$.

Since $n!=1 \cdot 2 \cdots(n-1) \cdot n$, each integer in $[2, n]$ divides $n!$. Hence, for each $i \in[2, n]$, we have $n!+i=i\left(\frac{n!}{i}+1\right)$. Each of $i, \frac{n!}{i}+1$ is an integer greater than 1 , so $n!+i$ can't be prime.
6. Prove that, for integer a, b and prime p :

$$
a b \equiv 0(\bmod p) \text { if and only if }[a \equiv 0(\bmod p) \text { or } b \equiv 0(\bmod p)]
$$

Now assume p is composite and disprove the statement.
\rightarrow : Suppose that $a b \equiv 0(\bmod p)$. Then $p \mid a b$. By Thm 1.5 (the "true" definition of primes), either $p \mid a$ or $p \mid b$. Hence either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.
\leftarrow : Suppose that $[a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)]$. If $a \equiv 0(\bmod p)$, then $p \mid a$, so there is some integer c with $a=p c$. Then $a b=p c b$, so $p \mid a b$. If $b \equiv 0(\bmod p)$, then $p \mid b$, so there is some intger d
with $b=p d$. Then $a b=p d a$, so $p \mid a b$. Either way, $p \mid a b$, so $a b \equiv 0(\bmod p)$.
Now, if p is composite, we may write $p=a b$ for some natural a, b. We have $p \nmid a$, since $a<p$ (proved in HW 1), and also $p \nmid b$. Thus $a \not \equiv 0(\bmod p)$ and $b \not \equiv 0(\bmod p)$, and yet $a b=p \equiv 0$ $(\bmod p)$.
7. Prove that, for integer a, b and prime p :

$$
a^{2} \equiv b^{2}(\bmod p) \text { if and only if }[a \equiv b(\bmod p) \text { or } a \equiv-b(\bmod p)]
$$

Now find a composite p and a, b to disprove the statement.
We use Thm 2.2(1) to rewrite $a \equiv b$ as $(a-b) \equiv 0$. We rewrite $a \equiv-b$ as $(a+b) \equiv 0$. We rewrite $a^{2} \equiv b^{2}$ as $a^{2}-b^{2}=(a-b)(a+b) \equiv 0$.
\leftarrow : This follows by Thm 2.2(2), whether or not p is prime. If either $(a+b) \equiv 0$ or $(a-b) \equiv 0$, then their product $(a+b)(a-b) \equiv 0$.
\rightarrow : We use Problem 6 (and now we need p to be prime). Since $(a-b)(a+b) \equiv 0(\bmod p)$, we conclude that either $(a-b) \equiv 0$ or $(a+b) \equiv 0$.
Most composite p admit a counterexample (though not all, e.g. $n=6$). For example, take $n=8$, $a=1, b=3 . a^{2} \equiv 1 \equiv b^{2}(\bmod 8)$, yet $a \not \equiv b(\bmod 8)$ and $a \not \equiv-b(\bmod 8)$.
8. Let $a, b, c, n \in \mathbb{N}$. Prove that $a \equiv b(\bmod n)$ if and only if $a c \equiv b c(\bmod n c)$.
\rightarrow : Suppose that $a \equiv b(\bmod n)$. Hence $n \mid a-b$, and there is some m where $n m=(a-b)$. Multiplying both sides by c, we get $n c m=(a-b) c=(a c-b c)$. Hence $n c \mid(a c-b c)$, so $a c \equiv b c$ $(\bmod n c)$.
$\leftarrow:$ Suppose that $a c \equiv b c(\bmod n c)$. Hence $n c \mid(a c-b c)$, and there is some k where $n c k=a c-b c=$ $(a-b) c$. Dividing by the nonzero c gives $n k=a-b$. Hence $n \mid(a-b)$, so $a \equiv b(\bmod n)$.
9. Let $a, b, n \in \mathbb{N}$. Determine the exact conditions under which the modular equation

$$
a x \equiv b \quad(\bmod a n)
$$

has solutions (for x).
If $a \mid b$, then we apply Problem 8 , and get a solution for $x($ unique $\bmod n)$. If however, $a \nmid b$, we will prove that there is no solution. Suppose by way of contradiction there is. Then $a n \mid(a x-b)$, so there is some integer c with $a n c=a x-b$. We rewrite as $b=a x-a n c=a(x-n c)$. Note that a divides the right hand side, but by assumption does not divide the left hand side; this is a contradiction. Hence the modular equation has a solution exactly when $a \mid b$.
10. Let $a, b, m, n \in \mathbb{N}$. Prove that:

$$
[a \equiv b(\bmod m) \text { and } a \equiv b(\bmod n)] \text { if and only if } a \equiv b(\bmod \operatorname{lcm}(m, n))
$$

\rightarrow : Since $a \equiv b(\bmod m)$, then $m \mid(a-b)$. Since $a \equiv b(\bmod n)$, then $n \mid(a-b)$. Apply the FTA to write $a-b=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}, m=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, and $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$. Applying Problem 2 twice, we conclude that $s_{i} \leq r_{i}$ and $t_{i} \leq r_{i}$, for all i. But then $\max \left(s_{i}, t_{i}\right) \leq r_{i}$, for all i. Applying problem 3, we conclude that $\operatorname{lcm}(m, n) \mid(a-b)$. Hence $a \equiv b(\bmod \operatorname{lcm}(a, b))$.
\leftarrow : Since $a \equiv b(\bmod \operatorname{lcm}(m, n))$, then $\operatorname{lcm}(m, n) \mid(a-b)$. But since $\operatorname{lcm}(m, n)$ is a multiple of m, in fact $m \mid(a-b)$. Similarly $\operatorname{lcm}(m, n)$ is a multiple of n, so in fact $n \mid(a-b)$. Hence $a \equiv b(\bmod m)$ and $a \equiv b(\bmod n)$.

