
MATH 521A: Abstract Algebra
Homework 2 Solutions

1. Find all primes between 1000 and 1050.

There are eight: 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049.

2. Let a = pr11 pr22 · · · p
rk
k and b = ps11 ps22 · · · p

sk
k where p1, . . . , pk are distinct positive prime integers,

and each ri, si ∈ N0. Prove that a|b if and only if ∀i ∈ [1, k], ri ≤ si.

→: Suppose a|b. Then b
a ∈ N. But b

a = ps1−r1
1 ps2−r2

2 · · · psk−rk
k . If any exponent is negative, b

a could
not be an integer because the primes are all distinct, so that prime power in the denominator will
not cancel with anything else. Hence each exponent is nonnegative, so si ≥ ri for all i ∈ [1, k].
←: Suppose ∀i ∈ [1, k], ri ≤ si. Then c = ps1−r1

1 ps2−r2
2 · · · psk−rk

k is an integer, and we calculate
ac = b, so a|b.

3. Let a = pr11 pr22 · · · p
rk
k and b = ps11 ps22 · · · p

sk
k where p1, . . . , pk are distinct positive prime integers,

and each ri, si ∈ N0. Determine, with proof, the prime factorization of gcd(a, b) and lcm(a, b).

Set d = p
min(r1,s1)
1 p

min(r2,s2)
2 · · · pmin(rk,sk)

k . Since min(ri, si) ≤ ri and min(ri, si) ≤ si, we apply
Problem 2 and conclude that d|a and d|b. Hence d is a common divisor of a, b. Suppose that c is
some other common divisor, i.e. c|a and c|b. By problem 2 again, we may write c = pt11 p

t2
2 · · · p

tk
k

with ti ≤ ri and ti ≤ si for all i. Hence ti ≤ min(ri, si), so by problem 2 a third time, c|d. Thus
d = gcd(a, b) by Cor 1.3.

Set e = p
max(r1,s1)
1 p

max(r2,s2)
2 · · · pmax(rk,sk)

k . Since max(ri, si) ≥ ri and max(ri, si) ≥ si, we apply
Problem 2 and conclude that a|e and b|e. Hence e is a common multiple of a, b. Suppose that c is
some other common multiple, i.e. a|c and b|c. By problem 2 again, we may write c = pt11 p

t2
2 · · · p

tk
k

with ti ≥ ri and ti ≥ si for all i. Hence ti ≥ max(ri, si), so by problem 2 a third time, e|c. Thus
d = lcm(a, b) by a theorem from class.

4. Let a, b,m, n ∈ N. Prove that am|bm if and only if an|bn.

Let {p1, p2, . . . pk} be the set of all (distinct) positive primes that divide a, b, or both. By the FTA
(Thm. 1.8) we may write a, b as in problem 2. In particular, am = pmr1

1 pmr2
2 · · · pmrk

k , with bm, an,
bn similarly. Suppose that am|bm. By problem 2, we conclude that for all i, mri ≤ msi. Hence
ri ≤ si, and also nri ≤ nsi. By problem 2 again, we conclude that an|bn. The reverse direction is
similar (suppose an|bn, apply problem 2 to get ∀i nri ≤ nsi, use algebra to get mri ≤ msi, apply
problem 2 again to get am|bm).

5. Prove that, for all n ≥ 2, there are no primes among {n! + 2, n! + 3, . . . , n! + n}.
Since n! = 1 · 2 · · · (n − 1) · n, each integer in [2, n] divides n!. Hence, for each i ∈ [2, n], we have
n! + i = i(n!i + 1). Each of i, n!

i + 1 is an integer greater than 1, so n! + i can’t be prime.

6. Prove that, for integer a, b and prime p:

ab ≡ 0 (mod p) if and only if [ a ≡ 0 (mod p) or b ≡ 0 (mod p) ]

Now assume p is composite and disprove the statement.

→: Suppose that ab ≡ 0 (mod p). Then p|ab. By Thm 1.5 (the “true” definition of primes), either
p|a or p|b. Hence either a ≡ 0 (mod p) or b ≡ 0 (mod p).
←: Suppose that [ a ≡ 0 (mod p) or b ≡ 0 (mod p) ]. If a ≡ 0 (mod p), then p|a, so there is some
integer c with a = pc. Then ab = pcb, so p|ab. If b ≡ 0 (mod p), then p|b, so there is some intger d



with b = pd. Then ab = pda, so p|ab. Either way, p|ab, so ab ≡ 0 (mod p).
Now, if p is composite, we may write p = ab for some natural a, b. We have p - a, since a < p
(proved in HW 1), and also p - b. Thus a 6≡ 0 (mod p) and b 6≡ 0 (mod p), and yet ab = p ≡ 0
(mod p).

7. Prove that, for integer a, b and prime p:

a2 ≡ b2 (mod p) if and only if [ a ≡ b (mod p) or a ≡ −b (mod p) ]

Now find a composite p and a, b to disprove the statement.

We use Thm 2.2(1) to rewrite a ≡ b as (a− b) ≡ 0. We rewrite a ≡ −b as (a + b) ≡ 0. We rewrite
a2 ≡ b2 as a2 − b2 = (a− b)(a + b) ≡ 0.

←: This follows by Thm 2.2(2), whether or not p is prime. If either (a+ b) ≡ 0 or (a− b) ≡ 0, then
their product (a + b)(a− b) ≡ 0.

→: We use Problem 6 (and now we need p to be prime). Since (a − b)(a + b) ≡ 0 (mod p), we
conclude that either (a− b) ≡ 0 or (a + b) ≡ 0.

Most composite p admit a counterexample (though not all, e.g. n = 6). For example, take n = 8,
a = 1, b = 3. a2 ≡ 1 ≡ b2 (mod 8), yet a 6≡ b (mod 8) and a 6≡ −b (mod 8).

8. Let a, b, c, n ∈ N. Prove that a ≡ b (mod n) if and only if ac ≡ bc (mod nc).

→: Suppose that a ≡ b (mod n). Hence n|a − b, and there is some m where nm = (a − b).
Multiplying both sides by c, we get ncm = (a − b)c = (ac − bc). Hence nc|(ac − bc), so ac ≡ bc
(mod nc).
←: Suppose that ac ≡ bc (mod nc). Hence nc|(ac− bc), and there is some k where nck = ac− bc =
(a− b)c. Dividing by the nonzero c gives nk = a− b. Hence n|(a− b), so a ≡ b (mod n).

9. Let a, b, n ∈ N. Determine the exact conditions under which the modular equation

ax ≡ b (mod an)

has solutions (for x).

If a|b, then we apply Problem 8, and get a solution for x (unique mod n). If however, a - b, we will
prove that there is no solution. Suppose by way of contradiction there is. Then an|(ax−b), so there
is some integer c with anc = ax− b. We rewrite as b = ax− anc = a(x− nc). Note that a divides
the right hand side, but by assumption does not divide the left hand side; this is a contradiction.
Hence the modular equation has a solution exactly when a|b.

10. Let a, b,m, n ∈ N. Prove that:

[ a ≡ b (mod m) and a ≡ b (mod n) ] if and only if a ≡ b (mod lcm(m,n))

→: Since a ≡ b (mod m), then m|(a− b). Since a ≡ b (mod n), then n|(a− b). Apply the FTA to
write a− b = pr11 pr22 · · · p

rk
k , m = ps11 ps22 · · · p

sk
k , and n = pt11 p

t2
2 · · · p

tk
k . Applying Problem 2 twice, we

conclude that si ≤ ri and ti ≤ ri, for all i. But then max(si, ti) ≤ ri, for all i. Applying problem 3,
we conclude that lcm(m,n)|(a− b). Hence a ≡ b (mod lcm(a, b)).
←: Since a ≡ b (mod lcm(m,n)), then lcm(m,n)|(a − b). But since lcm(m,n) is a multiple of m,
in fact m|(a− b). Similarly lcm(m,n) is a multiple of n, so in fact n|(a− b). Hence a ≡ b (mod m)
and a ≡ b (mod n).


