MATH 521A: Abstract Algebra

Homework 2 Solutions

1. Find all primes between 1000 and 1050.

There are eight: 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049.

2. Let $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and $b = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ where p_1, \ldots, p_k are distinct positive prime integers, and each $r_i, s_i \in \mathbb{N}_0$. Prove that a|b if and only if $\forall i \in [1, k], r_i \leq s_i$.

→: Suppose a|b. Then $\frac{b}{a} \in \mathbb{N}$. But $\frac{b}{a} = p_1^{s_1-r_1} p_2^{s_2-r_2} \cdots p_k^{s_k-r_k}$. If any exponent is negative, $\frac{b}{a}$ could not be an integer because the primes are all distinct, so that prime power in the denominator will not cancel with anything else. Hence each exponent is nonnegative, so $s_i \geq r_i$ for all $i \in [1, k]$. \leftarrow : Suppose $\forall i \in [1, k], r_i \leq s_i$. Then $c = p_1^{s_1-r_1} p_2^{s_2-r_2} \cdots p_k^{s_k-r_k}$ is an integer, and we calculate ac = b, so a|b.

3. Let $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and $b = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ where p_1, \ldots, p_k are distinct positive prime integers, and each $r_i, s_i \in \mathbb{N}_0$. Determine, with proof, the prime factorization of gcd(a, b) and lcm(a, b).

Set $d = p_1^{\min(r_1,s_1)} p_2^{\min(r_2,s_2)} \cdots p_k^{\min(r_k,s_k)}$. Since $\min(r_i,s_i) \leq r_i$ and $\min(r_i,s_i) \leq s_i$, we apply Problem 2 and conclude that d|a and d|b. Hence d is a common divisor of a, b. Suppose that c is some other common divisor, i.e. c|a and c|b. By problem 2 again, we may write $c = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$ with $t_i \leq r_i$ and $t_i \leq s_i$ for all i. Hence $t_i \leq \min(r_i, s_i)$, so by problem 2 a third time, c|d. Thus $d = \gcd(a, b)$ by Cor 1.3.

Set $e = p_1^{\max(r_1,s_1)} p_2^{\max(r_2,s_2)} \cdots p_k^{\max(r_k,s_k)}$. Since $\max(r_i,s_i) \ge r_i$ and $\max(r_i,s_i) \ge s_i$, we apply Problem 2 and conclude that a|e and b|e. Hence e is a common multiple of a, b. Suppose that c is some other common multiple, i.e. a|c and b|c. By problem 2 again, we may write $c = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$ with $t_i \ge r_i$ and $t_i \ge s_i$ for all i. Hence $t_i \ge \max(r_i, s_i)$, so by problem 2 a third time, e|c. Thus $d = \operatorname{lcm}(a, b)$ by a theorem from class.

4. Let $a, b, m, n \in \mathbb{N}$. Prove that $a^m | b^m$ if and only if $a^n | b^n$.

Let $\{p_1, p_2, \ldots p_k\}$ be the set of all (distinct) positive primes that divide a, b, or both. By the FTA (Thm. 1.8) we may write a, b as in problem 2. In particular, $a^m = p_1^{mr_1} p_2^{mr_2} \cdots p_k^{mr_k}$, with b^m , a^n , b^n similarly. Suppose that $a^m | b^m$. By problem 2, we conclude that for all $i, mr_i \leq ms_i$. Hence $r_i \leq s_i$, and also $nr_i \leq ns_i$. By problem 2 again, we conclude that $a^n | b^n$. The reverse direction is similar (suppose $a^n | b^n$, apply problem 2 to get $\forall i \ nr_i \leq ns_i$, use algebra to get $mr_i \leq ms_i$, apply problem 2 again to get $a^m | b^m$).

- 5. Prove that, for all $n \ge 2$, there are no primes among $\{n! + 2, n! + 3, \dots, n! + n\}$. Since $n! = 1 \cdot 2 \cdots (n-1) \cdot n$, each integer in [2, n] divides n!. Hence, for each $i \in [2, n]$, we have $n! + i = i(\frac{n!}{i} + 1)$. Each of $i, \frac{n!}{i} + 1$ is an integer greater than 1, so n! + i can't be prime.
- 6. Prove that, for integer a, b and prime p:

 $ab \equiv 0 \pmod{p}$ if and only if $[a \equiv 0 \pmod{p} \text{ or } b \equiv 0 \pmod{p}]$

Now assume p is composite and disprove the statement.

 \rightarrow : Suppose that $ab \equiv 0 \pmod{p}$. Then p|ab. By Thm 1.5 (the "true" definition of primes), either p|a or p|b. Hence either $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.

 \leftarrow : Suppose that $[a \equiv 0 \pmod{p} \text{ or } b \equiv 0 \pmod{p}]$. If $a \equiv 0 \pmod{p}$, then p|a, so there is some integer c with a = pc. Then ab = pcb, so p|ab. If $b \equiv 0 \pmod{p}$, then p|b, so there is some integer d

with b = pd. Then ab = pda, so p|ab. Either way, p|ab, so $ab \equiv 0 \pmod{p}$.

Now, if p is composite, we may write p = ab for some natural a, b. We have $p \nmid a$, since a < p (proved in HW 1), and also $p \nmid b$. Thus $a \not\equiv 0 \pmod{p}$ and $b \not\equiv 0 \pmod{p}$, and yet $ab = p \equiv 0 \pmod{p}$.

7. Prove that, for integer a, b and prime p:

 $a^2 \equiv b^2 \pmod{p}$ if and only if $[a \equiv b \pmod{p} \text{ or } a \equiv -b \pmod{p}]$

Now find a composite p and a, b to disprove the statement.

We use Thm 2.2(1) to rewrite $a \equiv b$ as $(a - b) \equiv 0$. We rewrite $a \equiv -b$ as $(a + b) \equiv 0$. We rewrite $a^2 \equiv b^2$ as $a^2 - b^2 = (a - b)(a + b) \equiv 0$.

←: This follows by Thm 2.2(2), whether or not p is prime. If either $(a+b) \equiv 0$ or $(a-b) \equiv 0$, then their product $(a+b)(a-b) \equiv 0$.

 \rightarrow : We use Problem 6 (and now we need p to be prime). Since $(a - b)(a + b) \equiv 0 \pmod{p}$, we conclude that either $(a - b) \equiv 0$ or $(a + b) \equiv 0$.

Most composite p admit a counterexample (though not all, e.g. n = 6). For example, take n = 8, a = 1, b = 3. $a^2 \equiv 1 \equiv b^2 \pmod{8}$, yet $a \not\equiv b \pmod{8}$ and $a \not\equiv -b \pmod{8}$.

8. Let $a, b, c, n \in \mathbb{N}$. Prove that $a \equiv b \pmod{n}$ if and only if $ac \equiv bc \pmod{nc}$.

 \rightarrow : Suppose that $a \equiv b \pmod{n}$. Hence n|a-b, and there is some m where nm = (a-b). Multiplying both sides by c, we get ncm = (a-b)c = (ac-bc). Hence nc|(ac-bc), so $ac \equiv bc \pmod{nc}$.

 \leftarrow : Suppose that $ac \equiv bc \pmod{nc}$. Hence nc|(ac-bc), and there is some k where nck = ac - bc = (a-b)c. Dividing by the nonzero c gives nk = a - b. Hence n|(a-b), so $a \equiv b \pmod{n}$.

9. Let $a, b, n \in \mathbb{N}$. Determine the exact conditions under which the modular equation

$$ax \equiv b \pmod{an}$$

has solutions (for x).

If a|b, then we apply Problem 8, and get a solution for x (unique mod n). If however, $a \nmid b$, we will prove that there is no solution. Suppose by way of contradiction there is. Then an|(ax-b), so there is some integer c with anc = ax - b. We rewrite as b = ax - anc = a(x - nc). Note that a divides the right hand side, but by assumption does not divide the left hand side; this is a contradiction. Hence the modular equation has a solution exactly when a|b.

10. Let $a, b, m, n \in \mathbb{N}$. Prove that:

 $[a \equiv b \pmod{m} \text{ and } a \equiv b \pmod{n}]$ if and only if $a \equiv b \pmod{m, n}$

→: Since $a \equiv b \pmod{m}$, then m|(a-b). Since $a \equiv b \pmod{n}$, then n|(a-b). Apply the FTA to write $a-b = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, $m = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$, and $n = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$. Applying Problem 2 twice, we conclude that $s_i \leq r_i$ and $t_i \leq r_i$, for all *i*. But then $\max(s_i, t_i) \leq r_i$, for all *i*. Applying problem 3, we conclude that $\operatorname{lcm}(m, n)|(a-b)$. Hence $a \equiv b \pmod{\operatorname{cm}(a, b)}$.

 \leftarrow : Since $a \equiv b \pmod{(m, n)}$, then $\operatorname{lcm}(m, n)|(a - b)$. But since $\operatorname{lcm}(m, n)$ is a multiple of m, in fact m|(a - b). Similarly $\operatorname{lcm}(m, n)$ is a multiple of n, so in fact n|(a - b). Hence $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$.