MATH 521A: Abstract Algebra
Homework 2 Solutions

1. Find all primes between 1000 and 1050.
There are eight: 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049.

2. Let a = pi'py?---p,* and b = pi'p3? - - p;* where py, ..., p; are distinct positive prime integers,
and each r;, s; € Ny. Prove that a|b if and only if Vi € [1, k], r; < s;.
—: Suppose alb. Then g € N. But g = pit 32" - pph TR If any exponent is negative, % could

not be an integer because the primes are all distinct, so that prime power in the denominator will
not cancel with anything else. Hence each exponent is nonnegative, so s; > r; for all i € [1, k].
< Suppose Vi € [1,k],r; < s;. Then ¢ = pi' "'p3?~ "2 - is an integer, and we calculate

ac = b, so alb.

Sk—Tk

-pk

3. Let a = pi'py?---pf and b = pi'p5?---p;* where pi,...,p; are distinct positive prime integers,

and each r;, s; € Ny. Determine, with proof, the prime factorization of ged(a,b) and lem(a, b).

Set d = p?in(”’sl)pgﬁn(m’”)~--pgﬁn(m’s’“). Since min(r;,s;) < r; and min(r;,s;) < s;, we apply

Problem 2 and conclude that d|a and d|b. Hence d is a common divisor of a,b. Suppose that c is
some other common divisor, i.e. c|a and ¢|b. By problem 2 again, we may write ¢ = pﬁl pt22 e p};’“
with ¢; < r; and t; < s; for all i. Hence t; < min(r;, s;), so by problem 2 a third time, c|d. Thus
d = ged(a, b) by Cor 1.3.

Set e = p?ax(”’sl)pglax(m’”) . -pzlax(rk’s’“). Since max(r;,s;) > r; and max(r;,s;) > s;, we apply

Problem 2 and conclude that ale and ble. Hence e is a common multiple of a,b. Suppose that ¢ is
some other common multiple, i.e. a|c and blc. By problem 2 again, we may write ¢ = ptil p’;2 e pfj
with ¢; > r; and t; > s; for all 7. Hence ¢; > max(r;, s;), so by problem 2 a third time, e|c. Thus
d = lem(a, b) by a theorem from class.

4. Let a,b,m,n € N. Prove that a™|b"™ if and only if a™[b".

Let {p1,p2,...pr} be the set of all (distinct) positive primes that divide a, b, or both. By the FTA
(Thm. 1.8) we may write a,b as in problem 2. In particular, ™ = p{""'py"?---p,""*, with b™, a”,
b"™ similarly. Suppose that o |b™. By problem 2, we conclude that for all i, mr; < ms;. Hence
r; < 8, and also nr; < ns;. By problem 2 again, we conclude that a™|b™. The reverse direction is
similar (suppose a"[b", apply problem 2 to get Vi nr; < ns;, use algebra to get mr; < ms;, apply
problem 2 again to get a"|b").

5. Prove that, for all n > 2, there are no primes among {n! +2,n! +3,...,nl + n}.
Since n! =1-2---(n — 1) - n, each integer in [2,n] divides n!. Hence, for each i € [2,n], we have
nl+1i= z(%‘ + 1). Each of 4, ”7' + 1 is an integer greater than 1, so n! + i can’t be prime.

6. Prove that, for integer a,b and prime p:
ab =0 (mod p) if and only if [ @ =0 (mod p) or b =0 (mod p) |

Now assume p is composite and disprove the statement.

—: Suppose that ab =0 (mod p). Then p|ab. By Thm 1.5 (the “true” definition of primes), either
pla or p|b. Hence either a =0 (mod p) or b=0 (mod p).

< Suppose that [ a =0 (mod p) or b=0 (mod p) |. If a =0 (mod p), then pla, so there is some
integer ¢ with a = pe. Then ab = pcb, so plab. If b =0 (mod p), then p|b, so there is some intger d
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with b = pd. Then ab = pda, so p|ab. Either way, p|ab, so ab= 0 (mod p).

Now, if p is composite, we may write p = ab for some natural a,b. We have p t a, since a < p
(proved in HW 1), and also p 1 b. Thus a # 0 (mod p) and b # 0 (mod p), and yet ab = p =
(mod p).

Prove that, for integer a,b and prime p:

a? =b? (mod p) if and only if [ a = b (mod p) or a = —b (mod p) ]

Now find a composite p and a, b to disprove the statement.

We use Thm 2.2(1) to rewrite a = b as (a — b) = 0. We rewrite a = —b as (a + b) = 0. We rewrite
a?=b%asa®—b*=(a—b)(a+b)=0.

<: This follows by Thm 2.2(2), whether or not p is prime. If either (a4 b) =0 or (a —b) = 0, then
their product (a + b)(a —b) = 0.

—: We use Problem 6 (and now we need p to be prime). Since (a — b)(a +b) = 0 (mod p), we
conclude that either (a —b) =0 or (a +b) =0.

Most composite p admit a counterexample (though not all, e.g. n = 6). For example, take n = 8,
a=1,b=3. a>=1=b* (mod 8), yet a Z b (mod 8) and a Z —b (mod 8).

Let a,b,c,n € N. Prove that a = b (mod n) if and only if ac = be (mod nc).

—: Suppose that a = b (mod n). Hence n|a — b, and there is some m where nm = (a — b).
Multiplying both sides by ¢, we get nem = (a — b)c = (ac — be). Hence nc|(ac — be), so ac = be
(mod nc).

+: Suppose that ac = be (mod nc). Hence ne|(ac —be), and there is some k where nck = ac —be =
(a — b)c. Dividing by the nonzero ¢ gives nk = a — b. Hence n|(a — b), so a = b (mod n).

Let a,b,n € N. Determine the exact conditions under which the modular equation
ar =b (mod an)

has solutions (for x).

If a|b, then we apply Problem 8, and get a solution for x (unique mod n). If however, a { b, we will
prove that there is no solution. Suppose by way of contradiction there is. Then an|(axz —b), so there
is some integer ¢ with anc = ax — b. We rewrite as b = ax — anc = a(x — nc). Note that a divides
the right hand side, but by assumption does not divide the left hand side; this is a contradiction.
Hence the modular equation has a solution exactly when alb.

Let a,b,m,n € N. Prove that:

[a=b (mod m) and a =b (mod n) | if and only if a = b (mod lem(m,n))
—: Since a = b (mod m), then m|(a — b). Since a = b (mod n), then n|(a —b). Apply the FTA to

write a — b = pi'py? - - pk, m = pi'ps? Pk, and n = pﬁlp'; . -pzk. Applying Problem 2 twice, we
conclude that s; < r; and t; < ry, for all 7. But then max(s;,t;) < r;, for all i. Applying problem 3,
we conclude that lem(m, n)|(a — b). Hence a = b (mod lem(a, b)).

<: Since a = b (mod lem(m,n)), then lem(m,n)|(a — b). But since lem(m,n) is a multiple of m,
in fact m|(a — b). Similarly lem(m,n) is a multiple of n, so in fact n|(a —b). Hence a = b (mod m)
and a = b (mod n).



