MATH 521A: Abstract Algebra

Homework 2: Due Sep. 9 (Wednesday)

1. Find all primes between 1000 and 1050 .
2. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ where p_{1}, \ldots, p_{k} are distinct positive prime integers, and each $r_{i}, s_{i} \in \mathbb{N}_{0}$. Prove that $a \mid b$ if and only if $\forall i \in[1, k], r_{i} \leq s_{i}$.
3. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ where p_{1}, \ldots, p_{k} are distinct positive prime integers, and each $r_{i}, s_{i} \in \mathbb{N}_{0}$. Determine, with proof, the prime factorization of $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.
4. Let $a, b, m, n \in \mathbb{N}$. Prove that $a^{m} \mid b^{m}$ if and only if $a^{n} \mid b^{n}$.
5. Prove that, for all $n \geq 2$, there are no primes among $\{n!+2, n!+3, \ldots, n!+n\}$.
6. Prove that, for integer a, b and prime p :

$$
a b \equiv 0(\bmod p) \text { if and only if }[a \equiv 0(\bmod p) \text { or } b \equiv 0(\bmod p)]
$$

Now assume p is composite and disprove the statement.
7. Prove that, for integer a, b and prime p :

$$
a^{2} \equiv b^{2}(\bmod p) \text { if and only if }[a \equiv b(\bmod p) \text { or } a \equiv-b(\bmod p)]
$$

Now find a composite p and a, b to disprove the statement.
8. Let $a, b, c, n \in \mathbb{N}$. Prove that $a \equiv b(\bmod n)$ if and only if $a c \equiv b c(\bmod n c)$.
9. Let $a, b, n \in \mathbb{N}$. Determine the exact conditions under which the modular equation

$$
a x \equiv b \quad(\bmod a n)
$$

has solution(s) (for x).
10. Let $a, b, m, n \in \mathbb{N}$. Prove that:

$$
[a \equiv b(\bmod m) \text { and } a \equiv b(\bmod n)] \text { if and only if } a \equiv b(\bmod \operatorname{lcm}(m, n))
$$

