MATH 521A: Abstract Algebra

Homework 3: Due Sep. 14

1. Write the \oplus-addition and \odot-multiplication tables of \mathbb{Z}_{10}.
2. For \mathbb{Z}_{10}, find the neutral additive element ${ }^{1}$, the neutral multiplicative element ${ }^{2}$, and all zero divisors ${ }^{3}$.
3. Find the units of \mathbb{Z}_{10}; for each unit specify its inverse.
4. The additive order of an element in \mathbb{Z}_{10} is the number of times one must \oplus-add it to itself to get [0]. Determine the additive order of each element of \mathbb{Z}_{10}.

We define $\mathbb{Z}_{2} \times \mathbb{Z}_{5}=\left\{(a, b): a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{5}\right\}$, the set of ordered pairs of elements, one each from \mathbb{Z}_{2} and \mathbb{Z}_{5}. We define operations in the natural way, i.e. componentwise: $(a, b) \oplus\left(a^{\prime}, b^{\prime}\right)=\left(a \oplus_{2} a^{\prime}, b \oplus_{5} b^{\prime}\right) \quad$ and $\quad(a, b) \odot\left(a^{\prime}, b^{\prime}\right)=\left(a \odot_{2} a^{\prime}, b \odot_{5} b^{\prime}\right)$.
5. Write the \oplus-addition and \odot-multiplication tables of $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$.
6. For $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$, find the neutral additive element, the neutral multiplicative element, and all zero divisors.
7. Find the units of $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$; for each unit specify its inverse.
8. Determine the additive order of each element of $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$.
9. Compare the two rings \mathbb{Z}_{10} and $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$ as best you can (we will learn tools to do this better, later in the course).

[^0]
[^0]: ${ }^{1}$ This is an element x, such that $x \oplus y=y \oplus x=y$ for all y.
 ${ }^{2}$ This is an element x, such that $x \odot y=y \odot x=y$ for all y.
 ${ }^{3}$ This is a nonzero element x, such that there is some nonzero y with $x \odot y=0$

