MATH 521A: Abstract Algebra

Homework 3: Due Sep. 14

- 1. Write the \oplus -addition and \odot -multiplication tables of \mathbb{Z}_{10} .
- 2. For \mathbb{Z}_{10} , find the neutral additive element¹, the neutral multiplicative element², and all zero divisors³.
- 3. Find the units of \mathbb{Z}_{10} ; for each unit specify its inverse.
- 4. The *additive order* of an element in \mathbb{Z}_{10} is the number of times one must \oplus -add it to itself to get [0]. Determine the additive order of each element of \mathbb{Z}_{10} .

We define $\mathbb{Z}_2 \times \mathbb{Z}_5 = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_5\}$, the set of ordered pairs of elements, one each from \mathbb{Z}_2 and \mathbb{Z}_5 . We define operations in the natural way, i.e. componentwise: $(a, b) \oplus (a', b') = (a \oplus_2 a', b \oplus_5 b')$ and $(a, b) \odot (a', b') = (a \odot_2 a', b \odot_5 b')$.

- 5. Write the \oplus -addition and \odot -multiplication tables of $\mathbb{Z}_2 \times \mathbb{Z}_5$.
- 6. For $\mathbb{Z}_2 \times \mathbb{Z}_5$, find the neutral additive element, the neutral multiplicative element, and all zero divisors.
- 7. Find the units of $\mathbb{Z}_2 \times \mathbb{Z}_5$; for each unit specify its inverse.
- 8. Determine the additive order of each element of $\mathbb{Z}_2 \times \mathbb{Z}_5$.
- 9. Compare the two rings \mathbb{Z}_{10} and $\mathbb{Z}_2 \times \mathbb{Z}_5$ as best you can (we will learn tools to do this better, later in the course).

¹This is an element x, such that $x \oplus y = y \oplus x = y$ for all y.

²This is an element x, such that $x \odot y = y \odot x = y$ for all y.

³This is a nonzero element x, such that there is some nonzero y with $x \odot y = 0$