
MATH 521A: Abstract Algebra
Homework 4 Solutions

1. Let R be a ring, with additive and multiplicative neutral elements 0R, 1R. Prove that 0R, 1R are unique.

Suppose there were some other additive neutral element 0′R. Consider X = 0R + 0′R. On one hand, X = 0′R
since 0R is neutral. On the other hand, X = 0R since 0′R is neutral. Hence 0R = 0′R.

Suppose there were some other multiplicative neutral element 1′R. Consider Y = 1R1′R. On one hand, Y = 1′R
since 1R is neutral. On the other hand, Y = 1R since 1′R is neutral. Hence 1R = 1′R.

2. For prime p, set Z[
√
p] = {a + b

√
p : a, b ∈ Z}. Prove that Z[

√
p] is a subring of R.

There are four things to check. First, 0R = 0 + 0
√
p ∈ Z[

√
p]. Second, let a + b

√
p, a′ + b′

√
p ∈ Z[

√
p]. We

have (a + b
√
p) + (a′ + b′

√
p) = (a + a′) + (b + b′)

√
p ∈ Z[

√
p]. Third, let a + b

√
p, a′ + b′

√
p ∈ Z[

√
p]. We

have (a + b
√
p)(a′ + b′

√
p) = (aa′ + pbb′) + (ab′ + ba′)

√
p ∈ Z[

√
p]. Fourth, let a + b

√
p ∈ Z[

√
p]. Now,

−(a + b
√
p) = (−a) + (−b)√p ∈ Z[

√
p].

3. For prime p, set Q[
√
p] = {a + b

√
p : a, b ∈ Q}. Prove that Q[

√
p] is a subfield of R.

There are five things to check, four of which are very similar to problem #2. First, 0R = 0 + 0
√
p ∈ Q[

√
p].

Second, let a + b
√
p, a′ + b′

√
p ∈ Q[

√
p]. We have (a + b

√
p) + (a′ + b′

√
p) = (a + a′) + (b + b′)

√
p ∈ Q[

√
p].

Third, let a+ b
√
p, a′ + b′

√
p ∈ Q[

√
p]. We have (a+ b

√
p)(a′ + b′

√
p) = (aa′ + pbb′) + (ab′ + ba′)

√
p ∈ Q[

√
p].

Fourth, let a + b
√
p ∈ Q[

√
p]. Now, −(a + b

√
p) = (−a) + (−b)√p ∈ Q[

√
p].

Fifth, let a+b
√
p ∈ Q[

√
p] be nonzero. We calculate 1

a+b
√
p = 1

a+b
√
p

a−b√p

a−b√p =
a−b√p

a2−pb2 = ( a
a2−pb2 )+( −b

a2−pb2 )
√
p.

Now, to show the result is in Q[
√
p], we need to prove that a2 − pb2 6= 0. Fortunately this was done on the

first exam, provided a, b are both nonzero. If just one is zero, that contradicts a2 − pb2 = 0; if both are zero,
that contradicts a + b

√
p being nonzero.

4. For k ∈ Z, define object Rk, which has ground set Z, and operations ⊕,� defined as:

a⊕ b = a + b, a� b = k

Determine for which k, if any, Rk is a ring.

First consider k 6= 0 and suppose Rk were a ring. Then for any a, b, c we have k = a�(b⊕c) = (a�b)⊕(a�c) =
k ⊕ k = k + k = 2k. Hence k = 2k, so 0 = k, a contradiction. Thus Rk is not a ring for k 6= 0.

If k = 0 we will prove that Rk is a ring.
1: a + b, 0 are each in Z, so ⊕,� are closed.
2: a⊕ (b⊕ c) = a⊕ (b + c) = a + (b + c) = (a + b) + c = (a + b)⊕ c = (a⊕ b)⊕ c, so ⊕ is associative.
3: a⊕ b = a + b = b + a = b⊕ a, so ⊕ is commutative.
4: 0⊕ a = 0 + a = a = a + 0 = a⊕ 0, so 0R0

= 0 is neutral under ⊕.
5: Let a ∈ Z. Then a⊕ (−a) = a + (−a) = 0, so inverses exist under ⊕.
6: a� (b� c) = a� 0 = 0 = 0� c = (a� b)� c, so � is associative.
8: a� b = 0 = b� a, so � is commutative. This is optional, but makes 7 easier.
7: a� (b⊕ c) = a� (b + c) = 0 = 0 + 0 = (a� b) + (a� c) = (a� b)⊕ (a� c). This proves the distributive
property from the left; the distributive property from the right follows by 8, i.e. commutativity of �.

5. Prove or disprove: If R,S are fields, then R× S is an integral domain.

We saw a counterexample in HW3. Z2 and Z5 are both fields, since 2, 5 are prime (and, by Thm 2.8, all nonzero
elements of these rings are units). But Z2 × Z5 has zero divisors, e.g. ([1], [0])� ([0], [1]) = ([0], [0]) = 0R.

6. Define R, an object with ground set Z, and operations ⊕,� defined as:

a⊕ b = a + b− 1, a� b = a + b− ab

Prove that R is an integral domain.

1. a + b− 1, a + b− ab are both integers, so ⊕,� are closed.
2. a⊕ (b⊕ c) = a⊕ (b+ c− 1) = a+ (b+ c− 1)− 1 = (a+ b− 1) + c− 1 = (a⊕ b) + c− 1 = (a⊕ b)⊕ c, so ⊕



is associative.
3. a⊕ b = a + b− 1 = b + a− 1 = b⊕ a, so ⊕ is commutative.
4. a⊕ 1 = a + 1− 1 = a = 1 + a− 1 = 1⊕ a, so 0R = 1 is neutral under ⊕.
5. Let a ∈ Z. Then a⊕ (2− a) = a + (2− a)− 1 = 1 = 0R, so inverses exist under ⊕.
6. a � (b � c) = a � (b + c − bc) = a + (b + c − bc) − a(b + c − bc) = (a + b + c) − (bc + ab + ac) + abc =
(a + b− ab) + c− (a + b− ab)c = (a + b− ab)� c = (a� b)� c, so � is associative.
8. a� b = a + b− ab = b + a− ba = b� a, so � is commutative.
7. a�(b⊕c) = a�(b+c−1) = a+(b+c−1)−a(b+c−1) = (a+b−ab)+(a+c−ac)−1 = (a�b)+(a�c)−1 =
(a� b)⊕ (a� c). This proves the distributive property from the left; the distributive property from the right
follows by 8, i.e. commutativity of �.
9. a� 0 = a + 0− a0 = a = 0 + a− 0a = 0 · a, so 1R = 0 is neutral under �.
10. 1R = 0 6= 1 = 0R. Suppose now that a � b = 0R = 1. Then a + b − ab = 1, which rearranges to
ab− a− b+ 1 = 0 or (a− 1)(b− 1) = 0. Hence either a = 1 = 0R or b = 1 = 0R. Thus R has no zero divisors.

7. Define R, an object with ground set Z, and operations ⊕,� defined as:

a⊕ b = a + b− 1, a� b = ab− a− b + 2

Prove that R is an integral domain.

1. a + b− 1, ab− (a + b) + 2 are both integers, so ⊕,� are closed.
2-5. ⊕ here is identical to problem 6, so the same arguments work.
6. a�(b�c) = a�(bc−b−c+2) = a(bc−b−c+2)−a−(bc−b−c+2)+2 = (a+b+c)−(ab+ac+bc)+abc =
(ab− a− b + 2)c− (ab− a− b + 2)− c + 2 = (ab− a− b + 2)� c = (a� b)� c, so � is associative.
8. a� b = ab− a− b + 2 = ba− b− a + 2 = b� a, so � is commutative.
7. a� (b⊕ c) = a� (b + c− 1) = a(b + c− 1)− a− (b + c− 1) + 2 = (ab− a− b + 2) + (ac− a− c + 2)− 1 =
(ab− a− b+ 2)⊕ (ac− a− c+ 2) = (a� b)⊕ (a� c). This proves the distributive property from the left; the
distributive property from the right follows by 8, i.e. commutativity of �.
9. 2 · a = 2a− 2− a + 2 = a = a2− a− 2 + 2 = a · 2, so 1R = 2 is neutral under �.
10. 1R = 2 6= 1 = 0R. Suppose now that a � b = 0R = 1. Then ab − a − b + 2 = 1, which rearranges to
ab− a− b+ 1 = 0 or (a− 1)(b− 1) = 0. Hence either a = 1 = 0R or b = 1 = 0R. Thus R has no zero divisors.

8. Define R, an object with ground set Z ∪ {+∞}, and operations ⊕,� defined as:

a⊕ b = min(a, b), a� b = a + b

Prove that R satisfies every field axiom except one, and prove that R fails to satisfy that one.

1. min(a, b), a + b are both integers, so ⊕,� are closed.
2. a⊕(b⊕c) = a⊕(min(b, c)) = min(a,min(b, c)) = min(a, b, c) = min(min(a, b), c) = min(a, b)⊕c = (a⊕b)⊕c,
so ⊕ is associative.
3. a⊕ b = min(a, b) = min(b, a) = b⊕ a, so ⊕ is commutative.
4. a⊕∞ = min(a,∞) = a = min(∞, a) =∞⊕ a, so 0R =∞ is neutral under ⊕.
5. Inverses under ⊕ need not exist. As proof, consider the counterexample of 7. There is no additive inverse
to 7, because there is no x ∈ R with 7⊕ x = min(7, x) =∞ = 0R. In fact, only ∞ has an additive inverse.
6. a� (b� c) = a� (b + c) = a + (b + c) = (a + b) + c = (a + b)� c = (a� b)� c. Hence � is associative.
8. a� b = a + b = b + a = b� a. Hence � is commutative.
7. a � (b ⊕ c) = a � (min(b, c)) = a + min(b, c) = min(a + b, a + c) = (a + b) ⊕ (a + c) = (a � b) ⊕ (a � c).
This proves the distributive property from the left; the distributive property from the right follows by 8, i.e.
commutativity of �.
9. a� 0 = a + 0 = a = 0 + a = 0� a, so 1R = 0 is neutral under �.
10. 0R = ∞ 6= 0 = 1R. Suppose now that a � b = 0R = ∞. Then a + b = ∞, which can only happen if
a =∞ = 0R or b =∞ = 0R. Thus R has no zero divisors.
11. Let a ∈ R satisfy a 6= 0R, i.e. a 6= ∞. We have a � (−a) = a + (−a) = 0 = 1R. Hence every nonzero
element of R is a unit.


