MATH 521A: Abstract Algebra

Homework 4 Solutions

1. Let R be a ring, with additive and multiplicative neutral elements $0_{R}, 1_{R}$. Prove that $0_{R}, 1_{R}$ are unique.

Suppose there were some other additive neutral element 0_{R}^{\prime}. Consider $X=0_{R}+0_{R}^{\prime}$. On one hand, $X=0_{R}^{\prime}$ since 0_{R} is neutral. On the other hand, $X=0_{R}$ since 0_{R}^{\prime} is neutral. Hence $0_{R}=0_{R}^{\prime}$.
Suppose there were some other multiplicative neutral element 1_{R}^{\prime}. Consider $Y=1_{R} 1_{R}^{\prime}$. On one hand, $Y=1_{R}^{\prime}$ since 1_{R} is neutral. On the other hand, $Y=1_{R}$ since 1_{R}^{\prime} is neutral. Hence $1_{R}=1_{R}^{\prime}$.
2. For prime p, set $\mathbb{Z}[\sqrt{p}]=\{a+b \sqrt{p}: a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[\sqrt{p}]$ is a subring of \mathbb{R}.

There are four things to check. First, $0_{\mathbb{R}}=0+0 \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. Second, let $a+b \sqrt{p}, a^{\prime}+b^{\prime} \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. We have $(a+b \sqrt{p})+\left(a^{\prime}+b^{\prime} \sqrt{p}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. Third, let $a+b \sqrt{p}, a^{\prime}+b^{\prime} \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. We have $(a+b \sqrt{p})\left(a^{\prime}+b^{\prime} \sqrt{p}\right)=\left(a a^{\prime}+p b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. Fourth, let $a+b \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$. Now, $-(a+b \sqrt{p})=(-a)+(-b) \sqrt{p} \in \mathbb{Z}[\sqrt{p}]$.
3. For prime p, set $\mathbb{Q}[\sqrt{p}]=\{a+b \sqrt{p}: a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[\sqrt{p}]$ is a subfield of \mathbb{R}.

There are five things to check, four of which are very similar to problem $\# 2$. First, $0_{\mathbb{R}}=0+0 \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. Second, let $a+b \sqrt{p}, a^{\prime}+b^{\prime} \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. We have $(a+b \sqrt{p})+\left(a^{\prime}+b^{\prime} \sqrt{p}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. Third, let $a+b \sqrt{p}, a^{\prime}+b^{\prime} \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. We have $(a+b \sqrt{p})\left(a^{\prime}+b^{\prime} \sqrt{p}\right)=\left(a a^{\prime}+p b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. Fourth, let $a+b \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$. Now, $-(a+b \sqrt{p})=(-a)+(-b) \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$.
Fifth, let $a+b \sqrt{p} \in \mathbb{Q}[\sqrt{p}]$ be nonzero. We calculate $\frac{1}{a+b \sqrt{p}}=\frac{1}{a+b \sqrt{p}} \frac{a-b \sqrt{p}}{a-b \sqrt{p}}=\frac{a-b \sqrt{p}}{a^{2}-p b^{2}}=\left(\frac{a}{a^{2}-p b^{2}}\right)+\left(\frac{-b}{a^{2}-p b^{2}}\right) \sqrt{p}$. Now, to show the result is in $\mathbb{Q}[\sqrt{p}]$, we need to prove that $a^{2}-p b^{2} \neq 0$. Fortunately this was done on the first exam, provided a, b are both nonzero. If just one is zero, that contradicts $a^{2}-p b^{2}=0$; if both are zero, that contradicts $a+b \sqrt{p}$ being nonzero.
4. For $k \in \mathbb{Z}$, define object R_{k}, which has ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b, \quad a \odot b=k
$$

Determine for which k, if any, R_{k} is a ring.
First consider $k \neq 0$ and suppose R_{k} were a ring. Then for any a, b, c we have $k=a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)=$ $k \oplus k=k+k=2 k$. Hence $k=2 k$, so $0=k$, a contradiction. Thus R_{k} is not a ring for $k \neq 0$.

If $k=0$ we will prove that R_{k} is a ring.
1: $a+b, 0$ are each in \mathbb{Z}, so \oplus, \odot are closed.
2: $a \oplus(b \oplus c)=a \oplus(b+c)=a+(b+c)=(a+b)+c=(a+b) \oplus c=(a \oplus b) \oplus c$, so \oplus is associative.
3: $a \oplus b=a+b=b+a=b \oplus a$, so \oplus is commutative.
4: $0 \oplus a=0+a=a=a+0=a \oplus 0$, so $0_{R_{0}}=0$ is neutral under \oplus.
5: Let $a \in \mathbb{Z}$. Then $a \oplus(-a)=a+(-a)=0$, so inverses exist under \oplus.
6: $a \odot(b \odot c)=a \odot 0=0=0 \odot c=(a \odot b) \odot c$, so \odot is associative.
8: $a \odot b=0=b \odot a$, so \odot is commutative. This is optional, but makes 7 easier.
7: $a \odot(b \oplus c)=a \odot(b+c)=0=0+0=(a \odot b)+(a \odot c)=(a \odot b) \oplus(a \odot c)$. This proves the distributive property from the left; the distributive property from the right follows by 8 , i.e. commutativity of \odot.
5. Prove or disprove: If R, S are fields, then $R \times S$ is an integral domain.

We saw a counterexample in HW3. \mathbb{Z}_{2} and \mathbb{Z}_{5} are both fields, since 2,5 are prime (and, by Thm 2.8 , all nonzero elements of these rings are units $)$. But $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$ has zero divisors, e.g. $([1],[0]) \odot([0],[1])=([0],[0])=0_{R}$.
6. Define R, an object with ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a+b-a b
$$

Prove that R is an integral domain.

1. $a+b-1, a+b-a b$ are both integers, so \oplus, \odot are closed.
2. $a \oplus(b \oplus c)=a \oplus(b+c-1)=a+(b+c-1)-1=(a+b-1)+c-1=(a \oplus b)+c-1=(a \oplus b) \oplus c$, so \oplus
is associative.
3. $a \oplus b=a+b-1=b+a-1=b \oplus a$, so \oplus is commutative.
4. $a \oplus 1=a+1-1=a=1+a-1=1 \oplus a$, so $0_{R}=1$ is neutral under \oplus.
5. Let $a \in \mathbb{Z}$. Then $a \oplus(2-a)=a+(2-a)-1=1=0_{R}$, so inverses exist under \oplus.
6. $a \odot(b \odot c)=a \odot(b+c-b c)=a+(b+c-b c)-a(b+c-b c)=(a+b+c)-(b c+a b+a c)+a b c=$ $(a+b-a b)+c-(a+b-a b) c=(a+b-a b) \odot c=(a \odot b) \odot c$, so \odot is associative.
7. $a \odot b=a+b-a b=b+a-b a=b \odot a$, so \odot is commutative.
8. $a \odot(b \oplus c)=a \odot(b+c-1)=a+(b+c-1)-a(b+c-1)=(a+b-a b)+(a+c-a c)-1=(a \odot b)+(a \odot c)-1=$ $(a \odot b) \oplus(a \odot c)$. This proves the distributive property from the left; the distributive property from the right follows by 8 , i.e. commutativity of \odot.
9. $a \odot 0=a+0-a 0=a=0+a-0 a=0 \cdot a$, so $1_{R}=0$ is neutral under \odot.
10. $1_{R}=0 \neq 1=0_{R}$. Suppose now that $a \odot b=0_{R}=1$. Then $a+b-a b=1$, which rearranges to $a b-a-b+1=0$ or $(a-1)(b-1)=0$. Hence either $a=1=0_{R}$ or $b=1=0_{R}$. Thus R has no zero divisors.
11. Define R, an object with ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a b-a-b+2
$$

Prove that R is an integral domain.

1. $a+b-1, a b-(a+b)+2$ are both integers, so \oplus, \odot are closed.

2-5. \oplus here is identical to problem 6 , so the same arguments work.
6. $a \odot(b \odot c)=a \odot(b c-b-c+2)=a(b c-b-c+2)-a-(b c-b-c+2)+2=(a+b+c)-(a b+a c+b c)+a b c=$ $(a b-a-b+2) c-(a b-a-b+2)-c+2=(a b-a-b+2) \odot c=(a \odot b) \odot c$, so \odot is associative.
8. $a \odot b=a b-a-b+2=b a-b-a+2=b \odot a$, so \odot is commutative.
7. $a \odot(b \oplus c)=a \odot(b+c-1)=a(b+c-1)-a-(b+c-1)+2=(a b-a-b+2)+(a c-a-c+2)-1=$ $(a b-a-b+2) \oplus(a c-a-c+2)=(a \odot b) \oplus(a \odot c)$. This proves the distributive property from the left; the distributive property from the right follows by 8 , i.e. commutativity of \odot.
9. $2 \cdot a=2 a-2-a+2=a=a 2-a-2+2=a \cdot 2$, so $1_{R}=2$ is neutral under \odot.
10. $1_{R}=2 \neq 1=0_{R}$. Suppose now that $a \odot b=0_{R}=1$. Then $a b-a-b+2=1$, which rearranges to $a b-a-b+1=0$ or $(a-1)(b-1)=0$. Hence either $a=1=0_{R}$ or $b=1=0_{R}$. Thus R has no zero divisors.
8. Define R, an object with ground set $\mathbb{Z} \cup\{+\infty\}$, and operations \oplus, \odot defined as:

$$
a \oplus b=\min (a, b), \quad a \odot b=a+b
$$

Prove that R satisfies every field axiom except one, and prove that R fails to satisfy that one.

1. $\min (a, b), a+b$ are both integers, so \oplus, \odot are closed.
2. $a \oplus(b \oplus c)=a \oplus(\min (b, c))=\min (a, \min (b, c))=\min (a, b, c)=\min (\min (a, b), c)=\min (a, b) \oplus c=(a \oplus b) \oplus c$, so \oplus is associative.
3. $a \oplus b=\min (a, b)=\min (b, a)=b \oplus a$, so \oplus is commutative.
4. $a \oplus \infty=\min (a, \infty)=a=\min (\infty, a)=\infty \oplus a$, so $0_{R}=\infty$ is neutral under \oplus.
5. Inverses under \oplus need not exist. As proof, consider the counterexample of 7 . There is no additive inverse to 7 , because there is no $x \in R$ with $7 \oplus x=\min (7, x)=\infty=0_{R}$. In fact, only ∞ has an additive inverse.
6. $a \odot(b \odot c)=a \odot(b+c)=a+(b+c)=(a+b)+c=(a+b) \odot c=(a \odot b) \odot c$. Hence \odot is associative.
7. $a \odot b=a+b=b+a=b \odot a$. Hence \odot is commutative.
8. $a \odot(b \oplus c)=a \odot(\min (b, c))=a+\min (b, c)=\min (a+b, a+c)=(a+b) \oplus(a+c)=(a \odot b) \oplus(a \odot c)$. This proves the distributive property from the left; the distributive property from the right follows by 8, i.e. commutativity of \odot.
9. $a \odot 0=a+0=a=0+a=0 \odot a$, so $1_{R}=0$ is neutral under \odot.
10. $0_{R}=\infty \neq 0=1_{R}$. Suppose now that $a \odot b=0_{R}=\infty$. Then $a+b=\infty$, which can only happen if $a=\infty=0_{R}$ or $b=\infty=0_{R}$. Thus R has no zero divisors.
11. Let $a \in R$ satisfy $a \neq 0_{R}$, i.e. $a \neq \infty$. We have $a \odot(-a)=a+(-a)=0=1_{R}$. Hence every nonzero element of R is a unit.
