MATH 521A: Abstract Algebra

Homework 4: Due Sep. 28

1. Let R be a ring, with additive and multiplicative neutral elements $0_{R}, 1_{R}$. Prove that $0_{R}, 1_{R}$ are unique.
2. For prime p, set $\mathbb{Z}[\sqrt{p}]=\{a+b \sqrt{p}: a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[\sqrt{p}]$ is a subring of \mathbb{R}.
3. For prime p, set $\mathbb{Q}[\sqrt{p}]=\{a+b \sqrt{p}: a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[\sqrt{p}]$ is a subfield of \mathbb{R}.
4. For $k \in \mathbb{Z}$, define object R_{k}, which has ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b, \quad a \odot b=k
$$

Determine for which k, if any, R_{k} is a ring.
5. Prove or disprove: If R, S are fields, then $R \times S$ is an integral domain.
6. Define R, an object with ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a+b-a b
$$

Prove that R is an integral domain.
7. Define R, an object with ground set \mathbb{Z}, and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a b-a-b+2
$$

Prove that R is an integral domain.
8. Define R, an object with ground set $\mathbb{Z} \cup\{+\infty\}$, and operations \oplus, \odot defined as:

$$
a \oplus b=\min (a, b), \quad a \odot b=a+b
$$

Prove that R satisfies every field axiom except one, and prove that R fails to satisfy that one.

