
MATH 521A: Abstract Algebra
Homework 5 Solutions

1. Let R be a ring, with a, b ∈ R. Prove that if ab is a left zero divisor, then either a or b must
be a left zero divisor.

Suppose that ab is a left zero divisor. Then ab 6= 0, hence a 6= 0 and b 6= 0. Also, there is
some nonzero c ∈ R, with (ab)c = 0. By associativity, a(bc) = 0. If bc 6= 0, then a is a left
zero divisor, and if bc = 0, then b is a left zero divisor.

2. Let R be a ring, with nonzero a ∈ R. Prove that if a is not a left zero divisor, then a may
be cancelled on the left. That is, if ab = ac, then b = c.

Suppose that ab = ac. We rewrite as ab− ac = 0, then by distributivity a(b− c) = 0. Since
a is nonzero, and a is not a left zero divisor, then b− c = 0. Hence b = c.

3. Let R be a ring with identity, with a ∈ R. Suppose that a is a unit. Prove that multiplicative
inverses are two-sided, i.e. ab = 1 if and only if ba = 1.

Suppose ab = 1. Multiplying on the right by a we get aba = 1a = a = a1. Since a is a unit,
it is not a zero divisor (by a theorem from class), hence not a left divisor. By Problem 2, we
may cancel on the left, getting ba = 1. The other direction is similar: if ba = 1, we multiply
by a on the left, getting aba = a = 1a, and then cancel a on the right to get ab = 1.

4. Let R be a ring with identity, with a ∈ R. Suppose that a is a unit. Prove that multiplicative
inverses are unique, i.e. if ab = 1 and ac = 1, then b = c.

Suppose that ab = 1 and ac = 1. By Problem 3, ca = 1. We multiply ab = 1 on the left by
c, getting c(ab) = c1 = c. By associativity, c(ab) = (ca)b = 1b = b. Hence b = c.

5. Let R and S ⊆ R both be rings with identity. Find an example where 1S 6= 1R.

Let R = Z × Z, and S = {(a, 0) : a ∈ Z}, a subring of R. We have 1R = (1, 1) while
1S = (1, 0).

6. Let R and S ⊆ R both be integral domains. Prove that 1S = 1R.

Working in R, we have 1S1R = 1S, because 1R is neutral in R. Working in S, we have
1S1S = 1S, because 1S is neutral in S. But the rings have the same multiplication, so (in
R), 1S1R = 1S = 1S1S. Now, 1S is not a left zero divisor in R (since there are no zero
divisors of any kind in an integral domain), so by problem 2 we may cancel on the left from
1S1R = 1S1S to conclude that 1R = 1S.

7. Consider R = {( a b
0 c ) : a ∈ Z, b, c ∈ Q}, a subring of the 2×2 matrix ring over R. Determine

the units and left zero divisors of R.

To find units, we calculate ( a b
0 c )

(
a′ b′

0 c′

)
=
(
aa′ ab′+bc′

0 cc′

)
= ( 1 0

0 1 ). Hence a, a′ are units in Z,
i.e. a = a′ = ±1. Also c, c′ are units in Q, i.e. nonzero. These two necessary conditions are
actually sufficient; provided that a = ±1 and c 6= 0, we set a′ = a, c′ = 1

c
, b′ = −b

ac
and the

result is in R.

To find left zero divisors, we calculate ( a b
0 c )

(
a′ b′

0 c′

)
=
(
aa′ ab′+bc′

0 cc′

)
= ( 0 0

0 0 ). Since Z and Q
have no (left) zero divisors, we must have a = 0 or a′ = 0, and also c = 0 or c′ = 0. We get
four cases:



(i) a = c = 0. Any b 6= 0 leads to a zero divisor: take a′ = b′ = 1 and c′ = 0.
(ii) a = 0, c 6= 0. Any b leads to a left zero divisor: take a′ = 1 and b′ = c′ = 0.
(iii) c = 0, a 6= 0. Any b leads to a left zero divisor: take a′ = 0, c′ = 1, and b′ = −bc′

a
.

(iv) a, c both nonzero. Now a′ = c′ = 0, but also 0 = ab′+ bc′ = ab′. Since a 6= 0, b′ = 0, but
now a′ = b′ = c′ = 0, so ( a b

0 c ) is not a left zero divisor.

To sum up, the left zero divisors are just those with ac = 0.

8. Let R be a ring, and let S1, S2, . . . be infinitely many subrings of R. Prove that their mutual

intersection T =
⋂
i≥1

Si is a subring of R.

First, we show T ⊆ R; if t ∈ T , then t ∈ S1 ⊆ R. Hence in fact T ⊆ S1 ⊆ R. Now, 0R is in
each Si, so it is in T . Next, let a, b ∈ T . For each i ≥ 1, we have a, b ∈ Si; since Si is a ring
a+ b ∈ Si. Since a+ b is in each Si, in fact a+ b ∈ T . Similarly, for a, b ∈ T we have ab ∈ Si

for every i, so ab ∈ T . Lastly, if a ∈ T , then for each i ≥ 1, a ∈ Si. So −a ∈ Si. Since −a is
in each Si, in fact −a ∈ T .

9. Let R1, R2 be rings. Suppose that S1 is a subring of R1, and S2 is a subring of R2. Prove
that S1 × S2 is a subring of R1 ×R2.

First, since S1, S2 are subrings of R1, R2, in particular they are subsets. Hence if (a, b) ∈
S1 × S2, then a ∈ S1 ⊆ R1 and b ∈ S2 ⊆ R2, so (a, b) ∈ R1 × R2. Thus S1 × S2 ⊆ R1 × R2.
Next, since S1 is a subring of R1, then the neutral additive element of R1, which I call 01,
has 01 ∈ S1. Similarly the neutral additive element of R2, which I call 02, has 02 ∈ S2.
Now the additive neutral element of R1 × R2 is (01, 02), and (01, 02) ∈ S1 × S2. Next, let
(a, b), (a′, b′) ∈ S1× S2. We have (a, b) + (a′, b′) = (a+ a′, b+ b′) and (a, b)(a′, b′) = (aa′, bb′).
Since S1, S2 are each rings, they are closed, so a + a′, aa′ ∈ S1 and b + b′, bb′ ∈ S2. Thus
S1 × S2 is closed under addition and multiplication. Lastly, let (a, b) ∈ S1 × S2. We take
−(a, b) = (−a,−b) (note that (a, b) + (−a,−b) = (01, 02)), and −a ∈ S1,−b ∈ S2. Hence
−(a, b) ∈ S1 × S2.

10. Let R be a ring with the property that for all x ∈ R, x2 = x. Prove that each element of R
is its own negative, and that R is commutative.

First, let a ∈ R and compute (a+ a) = (a+ a)2 = a2 + a2 + a2 + a2 = a+ a+ a+ a. Adding
−(a + a) to both sides we get 0 = a + a. This proves −a = a for every a ∈ R.

Second, let a, b ∈ R and compute (a + b) = (a + b)2 = a2 + ab + ba + b2 = a + ab + ba + b.
Adding −(a + b) to both sides we get 0 = ab + ba, which rearranges as ab = −ba. But since
each element is its own negative, −ba = ba so in fact ab = ba. Thus a, b commute. Since a, b
were arbitrary, R is commutative.


