MATH 521A: Abstract Algebra Homework 5: Due Oct. 5

- 1. Let R be a ring, with $a, b \in R$. Prove that if ab is a left zero divisor¹, then either a or b must be a left zero divisor.
- 2. Let R be a ring, with nonzero $a \in R$. Prove that if a is not a left zero divisor, then a may be cancelled on the left. That is, if ab = ac, then b = c.
- 3. Let R be a ring with identity, with $a \in R$. Suppose that a is a unit. Prove that multiplicative inverses are two-sided, i.e. ab = 1 if and only if ba = 1.
- 4. Let R be a ring with identity, with $a \in R$. Suppose that a is a unit. Prove that multiplicative inverses are unique, i.e. if ab = 1 and ac = 1, then b = c.
- 5. Let R and $S \subseteq R$ both be rings with identity. Find an example where $1_S \neq 1_R$.
- 6. Let R and $S \subseteq R$ both be integral domains. Prove that $1_S = 1_R$.
- 7. Consider $R = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a \in \mathbb{Z}, b, c \in \mathbb{Q} \}$, a subring of the 2 × 2 matrix ring over \mathbb{R} . Determine the units and left zero divisors of R.
- 8. Let R be a ring, and let S_1, S_2, \ldots be infinitely many subrings of R. Prove that their mutual intersection $T = \bigcap_{i \ge 1} S_i$ is a subring of R.
- 9. Let R_1, R_2 be rings. Suppose that S_1 is a subring of R_1 , and S_2 is a subring of R_2 . Prove that $S_1 \times S_2$ is a subring of $R_1 \times R_2$.
- 10. Let R be a ring with the property that for all $x \in R$, $x^2 = x$. Prove that each element of R is its own negative, and that R is commutative.

¹For a general ring R, we say nonzero $a \in R$ is a left zero divisor if there is some nonzero $x \in R$ with ax = 0. We say a is a right zero divisor if xa = 0. We say a is a zero divisor if either of these two holds.