MATH 521A: Abstract Algebra

Homework 5: Due Oct. 5

1. Let R be a ring, with $a, b \in R$. Prove that if $a b$ is a left zero divisor ${ }^{1}$, then either a or b must be a left zero divisor.
2. Let R be a ring, with nonzero $a \in R$. Prove that if a is not a left zero divisor, then a may be cancelled on the left. That is, if $a b=a c$, then $b=c$.
3. Let R be a ring with identity, with $a \in R$. Suppose that a is a unit. Prove that multiplicative inverses are two-sided, i.e. $a b=1$ if and only if $b a=1$.
4. Let R be a ring with identity, with $a \in R$. Suppose that a is a unit. Prove that multiplicative inverses are unique, i.e. if $a b=1$ and $a c=1$, then $b=c$.
5. Let R and $S \subseteq R$ both be rings with identity. Find an example where $1_{S} \neq 1_{R}$.
6. Let R and $S \subseteq R$ both be integral domains. Prove that $1_{S}=1_{R}$.
7. Consider $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a \in \mathbb{Z}, b, c \in \mathbb{Q}\right\}$, a subring of the 2×2 matrix ring over \mathbb{R}. Determine the units and left zero divisors of R.
8. Let R be a ring, and let S_{1}, S_{2}, \ldots be infinitely many subrings of R. Prove that their mutual intersection $T=\bigcap_{i \geq 1} S_{i}$ is a subring of R.
9. Let R_{1}, R_{2} be rings. Suppose that S_{1} is a subring of R_{1}, and S_{2} is a subring of R_{2}. Prove that $S_{1} \times S_{2}$ is a subring of $R_{1} \times R_{2}$.
10. Let R be a ring with the property that for all $x \in R, x^{2}=x$. Prove that each element of R is its own negative, and that R is commutative.
[^0]
[^0]: ${ }^{1}$ For a general ring R, we say nonzero $a \in R$ is a left zero divisor if there is some nonzero $x \in R$ with $a x=0$. We say a is a right zero divisor if $x a=0$. We say a is a zero divisor if either of these two holds.

