MATH 521A: Abstract Algebra

Homework 6 Solutions

1. Let R, S be rings. Consider the embedding map $f: R \rightarrow R \times S$ given by $f: r \mapsto\left(r, 0_{S}\right)$. Prove that f is a homomorphism.
We have $f\left(r+r^{\prime}\right)=\left(r+r^{\prime}, 0_{S}\right)=\left(r+r^{\prime}, 0_{S}+0_{S}\right)=\left(r, 0_{S}\right)+\left(r^{\prime}, 0_{S}\right)=f(r)+f\left(r^{\prime}\right)$. We also have $f\left(r r^{\prime}\right)=\left(r r^{\prime}, 0_{S}\right)=\left(r r^{\prime}, 0_{S} 0_{S}\right)=\left(r, 0_{S}\right)\left(r^{\prime}, 0_{S}\right)$.
2. Let R, S be rings. Consider the projection map $f: R \times S \rightarrow R$ given by $f:(r, s) \mapsto r$. Prove that f is a homomorphism.
We have $f\left((r, s)+\left(r^{\prime}, s^{\prime}\right)\right)=f\left(\left(r+r^{\prime}, s+s^{\prime}\right)\right)=r+r^{\prime}=f((r, s))+f\left(\left(r^{\prime}, s^{\prime}\right)\right)$, and $f\left((r, s)\left(r^{\prime}, s^{\prime}\right)\right)=f\left(\left(r r^{\prime}, s s^{\prime}\right)\right)=r r^{\prime}=f((r, s)) f\left(\left(r^{\prime}, s^{\prime}\right)\right)$.
3. We call a ring element x idempotent if $x^{2}=x$. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose $x \in R$ is idempotent. Prove that $f(x)$ is idempotent.
Suppose that x is idempotent, i.e. $x=x^{2}$. We have $f(x)=f\left(x^{2}\right)=f(x x)=f(x) f(x)$, so $f(x)^{2}=f(x)$.
4. We call a ring element x nilpotent if there is some $n \in \mathbb{N}$ such that $x^{n}=0$. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose $x \in R$ is nilpotent. Prove that $f(x)$ is nilpotent.
Recall that $f\left(0_{R}\right)=0_{S}$. Let $x \in R$ be nilpotent, i.e. $x^{n}=0_{R}$. We have $f(x)^{n}=$ $f(x) f(x) \cdots f(x)=f(x x \cdots x)=f\left(x^{n}\right)=f\left(0_{R}\right)=0_{S}$.
5. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Define the kernel of $f, \operatorname{Ker} f=\{r \in$ $\left.R: f(r)=0_{S}\right\}$. Prove that Kerf is a subring of R.
Because $f\left(0_{R}\right)=0_{S}$, we have $0_{R} \in \operatorname{Kerf}$. Suppose that $a, b \in \operatorname{Kerf}$. Then $f(a)=0_{S}, f(b)=$ 0_{S}. We have $f(a+b)=f(a)+f(b)=0_{S}+0_{S}=0_{S}$, so $a+b \in \operatorname{Kerf}$; this proves additive closure. We also have $f(a b)=f(a) f(b)=0_{S} 0_{S}=0_{S}$, so $a b \in \operatorname{Kerf}$; this proves multiplicative closure. By a theorem, $-f(a)=f(-a)$, so $0_{S}=f(a)+f(-a)$. But $f(a)=0_{S}$ since $a \in \operatorname{Kerf}$, so $0_{S}=0_{S}+f(-a)=f(-a)$. Hence $(-a) \in \operatorname{Kerf}$.
6. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Prove that f is injective (one-to-one) if and only if $\operatorname{Kerf}=\left\{0_{R}\right\}$.
First, suppose that $\operatorname{Kerf}=\left\{0_{R}\right\}$. Let $a, b \in R$ such that $f(a)=f(b)$. But then $f(a-b)=f(a)-f(b)=0_{S}$, so $a-b \in \operatorname{Kerf}$. Since $\operatorname{Kerf}=\left\{0_{R}\right\}$, in fact $a-b=0_{R}$, so $a-b+b=0_{R}+b$, so $a=b$.
Next, suppose that $c \in \operatorname{Kerf}$ with $c \neq 0_{R}$. Then $f(c)=f\left(0_{R}\right)=0_{S}$, so f is not injective.
7. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose that S_{1} is a subring of S. Prove that $f^{-1}\left(S_{1}\right)=\left\{r \in R: f(r) \in S_{1}\right\}$ is a subring of R.
First, $0_{S} \in S_{1}$ since every subring contains zero. Since $f\left(0_{R}\right)=0_{S}$, we have $0_{R} \in f^{-1}\left(S_{1}\right)$. Next, suppose $a, b \in f^{-1}\left(S_{1}\right)$. Then $f(a), f(b) \in S_{1}$. Since S_{1} is a subring, it is closed so $f(a+b)=f(a)+f(b) \in S_{1}$, and $f(a b)=f(a) f(b) \in S_{1}$. Hence $a+b, a b \in f^{-1}\left(S_{1}\right)$. Since S_{1} is a subring, it contains additive inverses, so $-f(a) \in S_{1}$. By a theorem $f(-a)=-f(a)$, so $-a \in f^{-1}\left(S_{1}\right)$.
8. Let R, S, T be rings, and $f: R \rightarrow S, g: S \rightarrow T$ two homomorphisms. Prove that $g \circ f:$ $R \rightarrow T$ is a homomorphism.
Let $a, b \in R$. We have $g(f(a+b))=g(f(a)+f(b)=g(f(a))+g((f(b))$, because f, g are homomorphisms (respectively). Similarly, $g(f(a b))=g(f(a) f(b))=g(f(a)) g(f(b))$.
9. Let R, S be rings, and $f: R \rightarrow S$ an isomorphism. Let $g=f^{-1}$, i.e. for all $r \in R$, $g(f(r))=r$ and for all $s \in S, f(g(s))=s$. Prove that $g: S \rightarrow R$ is an isomorphism.
First, g is a bijection because the inverse of a bijection is a bijection (or we can prove it if we like). We have $g(a+b)=g(f(g(a))+f(g(b)))=g(f(g(a)+g(b)))=g(a)+g(b)$, where we use the homomorphism property of f for the second equality. Similarly, we have $g(a b)=g(f(g(a)) f(g(b)))=g(f(g(a) g(b)))=g(a) g(b)$.
10. Let $S=\left\{\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right): a, b \in \mathbb{Z}\right\}$, which is a subring of $M_{2,2}(\mathbb{Z})$ (two-by-two matrices with integer entries). Prove that S is isomorphic to $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$, a subring of \mathbb{R}.
The notation gives a big hint; define $f: S \rightarrow \mathbb{Z}[\sqrt{2}]$ via $f:\left(\begin{array}{c}a \\ b \\ a\end{array}\right) \mapsto a+b \sqrt{2 b}$. We check $f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)+\left(\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right)\right)=f\left(\left(\begin{array}{cc}a+a^{\prime} & 2\left(b+b^{\prime}\right) \\ b+b^{\prime} & a+a^{\prime}\end{array}\right)\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{2}=(a+b \sqrt{2})+\left(a^{\prime}+\right.$ $\left.b^{\prime} \sqrt{2}\right)=f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\right)+f\left(\left(\begin{array}{cc}a^{\prime} 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right)\right)$. We also have $f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\left(\begin{array}{c}a^{\prime} \\ b^{\prime} \\ a^{\prime}\end{array}\right)\right)=f\left(\left(\begin{array}{cc}a a^{\prime}+2 b b^{\prime} \\ a^{\prime} b+b^{\prime} a & 2 a b^{\prime}+2 a^{\prime} b \\ 2 a^{\prime}+a a^{\prime}\end{array}\right)\right)=$ $\left(a a^{\prime}+2 b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{2}=(a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\right) f\left(\left(\begin{array}{c}a^{\prime} \\ b^{\prime} \\ a^{\prime}\end{array}\right)\right)$. To prove injection, suppose $f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\right)=f\left(\left(\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right)\right)$. Then $a+b \sqrt{2}=a^{\prime}+b^{\prime} \sqrt{2}$, which rearranges as $a-a^{\prime}=\left(b^{\prime}-b\right) \sqrt{2}$. If $b^{\prime}=b$, then $a=a^{\prime}$ and $\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)=\left(\begin{array}{c}a^{\prime} \\ b^{\prime} \\ a^{\prime}\end{array}\right)$. If $b^{\prime} \neq b$, then we divide by $b^{\prime}-b$ and discover that $\sqrt{2}$ is rational, a contradiction. Surjection is "obvious" due to the definitions: let $a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$, then $f\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\right)=a+b \sqrt{2}$.
11. Recall the ring from HW4 $\# 6: R$ has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a+b-a b
$$

Prove that R is isomorphic to \mathbb{Z}.
The hard part of this problem is finding the isomorphsim, which is $f: R \rightarrow \mathbb{Z}$ via $f(x)=$ $1-x$. We first prove a bijection; if $f(x)=f\left(x^{\prime}\right)$ then $1-x=1-x^{\prime}$ so $x=x^{\prime}$. Also, for $a \in \mathbb{Z}$ we have $f(1-a)=1-(1-a)=a$.
Now, $f(a \oplus b)=f(a+b-1)=1-(a+b-1)=2-a-b=(1-a)+(1-b)=f(a)+f(b)$, and $f(a \odot b)=f(a+b-a b)=1-(a+b-a b)=1-a-b+a b=(1-a)(1-b)=f(a) f(b)$.
12. Recall the ring from HW4 $\# 7: R$ has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a b-a-b+2
$$

Prove that R is isomorphic to \mathbb{Z}.
The hard part of this problem is finding the isomorphsim, which is $f: R \rightarrow \mathbb{Z}$ via $f(x)=$ $x-1$. We first prove a bijection; if $f(x)=f\left(x^{\prime}\right)$ then $x-1=x^{\prime}-1$ so $x=x^{\prime}$. Also, for $a \in \mathbb{Z}$ we have $f(a+1)=(a+1)-1=a$.
Now, $f(a \oplus b)=f(a+b-1)=a+b-2=(a-1)+(b-1)=f(a)+f(b)$, and $f(a \odot b)=f(a b-a-b+2)=a b-a-b+2-1=a b-a-b+1=(a-1)(b-1)=f(a) f(b)$.

