MATH 521A: Abstract Algebra
Homework 6 Solutions

. Let R,S be rings. Consider the embedding map f : R — R x S given by f : r — (r,0g).
Prove that f is a homomorphism.

We have f(r +7r') = (r+1",05) = (r +1',0s + 0s) = (r,05) + (r',05) = f(r) + f(r’). We
also have f(rr') = (r1’,0g) = (r1’,0505) = (r,05)(r’, 0g).

. Let R, S be rings. Consider the projection map f : R x S — R given by f : (r,s) — 7.
Prove that f is a homomorphism.

We have f((r,s) + (r',s") = f((r+1r,s+5)) =r+71 = f((r,s)) + f((+",5)), and
fros)(r',8") = f((rr',ss")) = v’ = f((r, 9)) F((', 5')).

. We call a ring element x idempotent if 2> = x. Let R,S be rings, and f : R — S a
homomorphism. Suppose z € R is idempotent. Prove that f(z) is idempotent.

Suppose that z is idempotent, i.e. * = 2%, We have f(z) = f(2?) = f(xz) = f(x)f(z), so
f(@)? = f(2).

. We call a ring element x nilpotent if there is some n € N such that 2" = 0. Let R,S be
rings, and f : R — S a homomorphism. Suppose x € R is nilpotent. Prove that f(z) is
nilpotent.

Recall that f(0g) = 0s. Let x € R be nilpotent, i.e. z"™ = 0r. We have f(x)" =

f@)f(z)--- fz) = flaz---x) = f(z") = f(Or) = Os.

. Let R,S be rings, and f : R — S a homomorphism. Define the kernel of f, Kerf = {r €
R: f(r) =0g}. Prove that Kerf is a subring of R.

Because f(0r) = Og, we have O € Kerf. Suppose that a,b € Kerf. Then f(a) = 0g, f(b) =
0s. We have f(a+b) = f(a) + f(b) = 0s + 0g = 0g, so a + b € Kerf; this proves additive
closure. We also have f(ab) = f(a)f(b) = 0s0s = Og, so ab € Kerf; this proves multiplica-
tive closure. By a theorem, —f(a) = f(—a), so 0s = f(a) + f(—a). But f(a) = Og since
a € Kerf,so0s=0g+ f(—a) = f(—a). Hence (—a) € Kerf.

. Let R, S be rings, and f : R — S a homomorphism. Prove that f is injective (one-to-one)
if and only if Kerf = {Og}.

First, suppose that Kerf = {0Og}. Let a,b € R such that f(a) = f(b). But then
fla—=1b) = f(a) — f(b) = 0g,s0 a —b € Kerf. Since Kerf = {Og}, in fact a — b = Og, so
a—b+b=0g+0b,s0a=0.

Next, suppose that ¢ € Kerf with ¢ # 0g. Then f(c) = f(0g) = Og, so f is not injective.

. Let R,S be rings, and f : R — S a homomorphism. Suppose that S; is a subring of S.
Prove that f~1(S)) = {r € R: f(r) € S;} is a subring of R.

First, 0 € S; since every subring contains zero. Since f(0r) = Og, we have 0g € f~1(5}).
Next, suppose a,b € f~1(S1). Then f(a), f(b) € S;. Since S is a subring, it is closed so
fla+0b) = f(a) + f(b) € Si, and f(ab) = f(a)f(b) € S;. Hence a + b,ab € f~1(S;). Since
Sy is a subring, it contains additive inverses, so —f(a) € S;. By a theorem f(—a) = —f(a),

so —a € f71(S)).
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Let R,S,T be rings, and f: R — S, g : S — T two homomorphisms. Prove that go f :
R — T is a homomorphism.

Let a,b € R. We have g(f(a+0b)) = g(f(a) + f(b) = g(f(a)) + g((f(b)), because f, g are
homomorphisms (respectively). Similarly, g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)).

Let R,S be rings, and f : R — S an isomorphism. Let ¢ = f~!, ie. for all » € R,
g(f(r)) =r and for all s € S, f(g(s)) =s. Prove that g : S — R is an isomorphism.

First, g is a bijection because the inverse of a bijection is a bijection (or we can prove it
if we like). We have g(a +b) = g(f(g(a)) + f(g(b))) = g(f(g(a) + g(b))) = g(a) + g(b),

where we use the homomorphism property of f for the second equality. Similarly, we have

g(ab) = g(f(g(a))f(g(b))) = g(f(g(a)g(b))) = g(a)g(b).

Let S ={(¢%):a,b e Z}, which is a subring of M4(Z) (two-by-two matrices with integer
entries). Prove that S is isomorphic to Z[v/2] = {a + bv/2 : a,b € Z}, a subring of R.

The notation gives a big hint; define f : S — Z[V2] via f : (¢2) = a + bv/2. We

a

check f((¢2)+ (42)) =f <<abiz,/ Q(bH’l))) =(a+a)+ (b+0)V2=(a+b/2)+ (a +

a+a’
V) = (320 + 1 ((52))- We abo have £ (52 () = £ (538 720)) =
(ad’ + 2b6') + (ab + ba')V2 = (a +bvV2)(d' + U'V2) = f((42) f((%2)). To prove in-
jection, suppose f((¢2)) = f((% zab/)). Then a + bv/2 = a’ + b'\/2, which rearranges as
a—a = —b)V2 Ift/ =b, thena=da" and (§2) = (¢ 2). If b/ # b, then we divide by
b — b and discover that /2 is rational, a contradiction. Surjection is “obvious” due to the
definitions: let a + bv/2 € Z[v/2], then f ((¢ %)) = a + bv/2.

Recall the ring from HW4 #6: R has ground set Z and operations @, ® defined as:
adb=a+b—1, a®b=a+b—ab

Prove that R is isomorphic to Z.

The hard part of this problem is finding the isomorphsim, which is f : R — Z via f(z) =
1 — 2. We first prove a bijection; if f(z) = f(2') then 1 —2 =1 — 2’ so x = 2. Also, for
a €7 we have f(1—a)=1—(1—a)=a.

Now, f(a®b) = fla+b—1)=1—(a+b—1)=2—a—-b=(1—a)+ (1 —-0) = f(a) + f(b),
and f(a®b) = fa+b—ab)=1—(a+b—ab)=1—a—b+ab= (1—a)(1—=0) = f(a)f(D).

Recall the ring from HW4 #7: R has ground set Z and operations @, ® defined as:
adb=a+b—-1, aGb=ab—a—b+2

Prove that R is isomorphic to Z.

The hard part of this problem is finding the isomorphsim, which is f : R — Z via f(z) =
x — 1. We first prove a bijection; if f(x) = f(2) then x — 1 =2’ — 1 so o = 2/. Also, for
a € Z we have f(a+1)=(a+1)—1=a.

Now, fla®b) = fla+b—1) =a+b—-—2=(a—1)+(b—-1) = f(a) + f(b), and
fla®b) = flab—a—b+2)=ab—a—b+2—1=ab—a—b+1=(a—1)(b—1) = f(a)f(b).



