MATH 521A: Abstract Algebra Homework 6 Solutions

- 1. Let R, S be rings. Consider the *embedding* map $f : R \to R \times S$ given by $f : r \mapsto (r, 0_S)$. Prove that f is a homomorphism. We have $f(r + r') = (r + r', 0_S) = (r + r', 0_S + 0_S) = (r, 0_S) + (r', 0_S) = f(r) + f(r')$. We also have $f(rr') = (rr', 0_S) = (rr', 0_S 0_S) = (r, 0_S)(r', 0_S)$.
- 2. Let R, S be rings. Consider the projection map $f : R \times S \to R$ given by $f : (r, s) \mapsto r$. Prove that f is a homomorphism. We have f((r, s) + (r', s')) = f((r + r', s + s')) = r + r' = f((r, s)) + f((r', s')), and f((r, s)(r', s')) = f((rr', ss')) = rr' = f((r, s))f((r', s')).
- 3. We call a ring element x idempotent if $x^2 = x$. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose $x \in R$ is idempotent. Prove that f(x) is idempotent. Suppose that x is idempotent, i.e. $x = x^2$. We have $f(x) = f(x^2) = f(xx) = f(x)f(x)$, so $f(x)^2 = f(x)$.
- 4. We call a ring element x nilpotent if there is some $n \in \mathbb{N}$ such that $x^n = 0$. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose $x \in R$ is nilpotent. Prove that f(x) is nilpotent.

Recall that $f(0_R) = 0_S$. Let $x \in R$ be nilpotent, i.e. $x^n = 0_R$. We have $f(x)^n = f(x)f(x)\cdots f(x) = f(xx\cdots x) = f(x^n) = f(0_R) = 0_S$.

- 5. Let R, S be rings, and $f: R \to S$ a homomorphism. Define the kernel of f, $Kerf = \{r \in R: f(r) = 0_S\}$. Prove that Kerf is a subring of R. Because $f(0_R) = 0_S$, we have $0_R \in Kerf$. Suppose that $a, b \in Kerf$. Then $f(a) = 0_S, f(b) = 0_S$. We have $f(a + b) = f(a) + f(b) = 0_S + 0_S = 0_S$, so $a + b \in Kerf$; this proves additive closure. We also have $f(ab) = f(a)f(b) = 0_S 0_S = 0_S$, so $ab \in Kerf$; this proves multiplicative closure. By a theorem, -f(a) = f(-a), so $0_S = f(a) + f(-a)$. But $f(a) = 0_S$ since $a \in Kerf$, so $0_S = 0_S + f(-a) = f(-a)$. Hence $(-a) \in Kerf$.
- 6. Let R, S be rings, and $f: R \to S$ a homomorphism. Prove that f is injective (one-to-one) if and only if $Kerf = \{0_R\}$. First, suppose that $Kerf = \{0_R\}$. Let $a, b \in R$ such that f(a) = f(b). But then $f(a - b) = f(a) - f(b) = 0_S$, so $a - b \in Kerf$. Since $Kerf = \{0_R\}$, in fact $a - b = 0_R$, so $a - b + b = 0_R + b$, so a = b. Next, suppose that $c \in Kerf$ with $c \neq 0_R$. Then $f(c) = f(0_R) = 0_S$, so f is not injective.
- 7. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose that S_1 is a subring of S. Prove that $f^{-1}(S_1) = \{r \in R : f(r) \in S_1\}$ is a subring of R. First, $0_S \in S_1$ since every subring contains zero. Since $f(0_R) = 0_S$, we have $0_R \in f^{-1}(S_1)$. Next, suppose $a, b \in f^{-1}(S_1)$. Then $f(a), f(b) \in S_1$. Since S_1 is a subring, it is closed so $f(a + b) = f(a) + f(b) \in S_1$, and $f(ab) = f(a)f(b) \in S_1$. Hence $a + b, ab \in f^{-1}(S_1)$. Since S_1 is a subring, it contains additive inverses, so $-f(a) \in S_1$. By a theorem f(-a) = -f(a), so $-a \in f^{-1}(S_1)$.

- 8. Let R, S, T be rings, and $f : R \to S, g : S \to T$ two homomorphisms. Prove that $g \circ f : R \to T$ is a homomorphism. Let $a, b \in R$. We have g(f(a + b)) = g(f(a) + f(b) = g(f(a)) + g((f(b))), because f, g are homomorphisms (respectively). Similarly, g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)).
- 9. Let R, S be rings, and $f : R \to S$ an isomorphism. Let $g = f^{-1}$, i.e. for all $r \in R$, g(f(r)) = r and for all $s \in S$, f(g(s)) = s. Prove that $g : S \to R$ is an isomorphism. First, g is a bijection because the inverse of a bijection is a bijection (or we can prove it if we like). We have g(a + b) = g(f(g(a)) + f(g(b))) = g(f(g(a) + g(b))) = g(a) + g(b), where we use the homomorphism property of f for the second equality. Similarly, we have g(ab) = g(f(g(a))f(g(b))) = g(f(g(a)g(b))) = g(a)g(b).
- 10. Let $S = \{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \}$, which is a subring of $M_{2,2}(\mathbb{Z})$ (two-by-two matrices with integer entries). Prove that S is isomorphic to $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$, a subring of \mathbb{R} . The notation gives a big hint; define $f : S \to \mathbb{Z}[\sqrt{2}]$ via $f : \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \mapsto a + b\sqrt{2}$. We check $f\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}\right) = f\left(\begin{pmatrix} a+a' & 2(b+b') \\ b+b' & a+a' \end{pmatrix}\right) = (a + a') + (b + b')\sqrt{2} = (a + b\sqrt{2}) + (a' + b'\sqrt{2}) = f\left(\begin{pmatrix} a & 2b \\ a' & b' \end{pmatrix} + f\left(\begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}\right)$. We also have $f\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}\right) = f\left(\begin{pmatrix} aa' + 2bb' & 2ab' + 2ab' \\ a'b+b'a & 2bb' + aa' \end{pmatrix}\right) = (aa' + 2bb') + (ab' + ba')\sqrt{2} = (a + b\sqrt{2})(a' + b'\sqrt{2}) = f\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}\right) f\left(\begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}\right)$. To prove injection, suppose $f\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}\right) = f\left(\begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}\right)$. Then $a + b\sqrt{2} = a' + b'\sqrt{2}$, which rearranges as $a - a' = (b' - b)\sqrt{2}$. If b' = b, then a = a' and $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}$. If $b' \neq b$, then we divide by b' - b and discover that $\sqrt{2}$ is rational, a contradiction. Surjection is "obvious" due to the definitions: let $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$, then $f\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}\right) = a + b\sqrt{2}$.
- 11. Recall the ring from HW4 #6: R has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$a \oplus b = a + b - 1$$
, $a \odot b = a + b - ab$

Prove that R is isomorphic to \mathbb{Z} .

The hard part of this problem is finding the isomorphism, which is $f: R \to \mathbb{Z}$ via f(x) = 1 - x. We first prove a bijection; if f(x) = f(x') then 1 - x = 1 - x' so x = x'. Also, for $a \in \mathbb{Z}$ we have f(1-a) = 1 - (1-a) = a. Now, $f(a \oplus b) = f(a+b-1) = 1 - (a+b-1) = 2 - a - b = (1-a) + (1-b) = f(a) + f(b)$, and $f(a \odot b) = f(a+b-ab) = 1 - (a+b-ab) = 1 - a - b + ab = (1-a)(1-b) = f(a)f(b)$.

12. Recall the ring from HW4 #7: R has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$a \oplus b = a + b - 1$$
, $a \odot b = ab - a - b + 2$

Prove that R is isomorphic to \mathbb{Z} .

The hard part of this problem is finding the isomorphism, which is $f : R \to \mathbb{Z}$ via f(x) = x - 1. We first prove a bijection; if f(x) = f(x') then x - 1 = x' - 1 so x = x'. Also, for $a \in \mathbb{Z}$ we have f(a + 1) = (a + 1) - 1 = a.

Now, $f(a \oplus b) = f(a+b-1) = a+b-2 = (a-1)+(b-1) = f(a)+f(b)$, and $f(a \odot b) = f(ab-a-b+2) = ab-a-b+2-1 = ab-a-b+1 = (a-1)(b-1) = f(a)f(b)$.