
MATH 521A: Abstract Algebra
Homework 6 Solutions

1. Let R, S be rings. Consider the embedding map f : R → R × S given by f : r 7→ (r, 0S).
Prove that f is a homomorphism.

We have f(r + r′) = (r + r′, 0S) = (r + r′, 0S + 0S) = (r, 0S) + (r′, 0S) = f(r) + f(r′). We
also have f(rr′) = (rr′, 0S) = (rr′, 0S0S) = (r, 0S)(r′, 0S).

2. Let R, S be rings. Consider the projection map f : R × S → R given by f : (r, s) 7→ r.
Prove that f is a homomorphism.

We have f((r, s) + (r′, s′)) = f((r + r′, s + s′)) = r + r′ = f((r, s)) + f((r′, s′)), and
f((r, s)(r′, s′)) = f((rr′, ss′)) = rr′ = f((r, s))f((r′, s′)).

3. We call a ring element x idempotent if x2 = x. Let R, S be rings, and f : R → S a
homomorphism. Suppose x ∈ R is idempotent. Prove that f(x) is idempotent.

Suppose that x is idempotent, i.e. x = x2. We have f(x) = f(x2) = f(xx) = f(x)f(x), so
f(x)2 = f(x).

4. We call a ring element x nilpotent if there is some n ∈ N such that xn = 0. Let R, S be
rings, and f : R → S a homomorphism. Suppose x ∈ R is nilpotent. Prove that f(x) is
nilpotent.

Recall that f(0R) = 0S. Let x ∈ R be nilpotent, i.e. xn = 0R. We have f(x)n =
f(x)f(x) · · · f(x) = f(xx · · ·x) = f(xn) = f(0R) = 0S.

5. Let R, S be rings, and f : R → S a homomorphism. Define the kernel of f , Kerf = {r ∈
R : f(r) = 0S}. Prove that Kerf is a subring of R.

Because f(0R) = 0S, we have 0R ∈ Kerf . Suppose that a, b ∈ Kerf . Then f(a) = 0S, f(b) =
0S. We have f(a + b) = f(a) + f(b) = 0S + 0S = 0S, so a + b ∈ Kerf ; this proves additive
closure. We also have f(ab) = f(a)f(b) = 0S0S = 0S, so ab ∈ Kerf ; this proves multiplica-
tive closure. By a theorem, −f(a) = f(−a), so 0S = f(a) + f(−a). But f(a) = 0S since
a ∈ Kerf , so 0S = 0S + f(−a) = f(−a). Hence (−a) ∈ Kerf .

6. Let R, S be rings, and f : R → S a homomorphism. Prove that f is injective (one-to-one)
if and only if Kerf = {0R}.
First, suppose that Kerf = {0R}. Let a, b ∈ R such that f(a) = f(b). But then
f(a − b) = f(a) − f(b) = 0S, so a − b ∈ Kerf . Since Kerf = {0R}, in fact a − b = 0R, so
a− b + b = 0R + b, so a = b.
Next, suppose that c ∈ Kerf with c 6= 0R. Then f(c) = f(0R) = 0S, so f is not injective.

7. Let R, S be rings, and f : R → S a homomorphism. Suppose that S1 is a subring of S.
Prove that f−1(S1) = {r ∈ R : f(r) ∈ S1} is a subring of R.

First, 0S ∈ S1 since every subring contains zero. Since f(0R) = 0S, we have 0R ∈ f−1(S1).
Next, suppose a, b ∈ f−1(S1). Then f(a), f(b) ∈ S1. Since S1 is a subring, it is closed so
f(a + b) = f(a) + f(b) ∈ S1, and f(ab) = f(a)f(b) ∈ S1. Hence a + b, ab ∈ f−1(S1). Since
S1 is a subring, it contains additive inverses, so −f(a) ∈ S1. By a theorem f(−a) = −f(a),
so −a ∈ f−1(S1).



8. Let R, S, T be rings, and f : R → S, g : S → T two homomorphisms. Prove that g ◦ f :
R→ T is a homomorphism.

Let a, b ∈ R. We have g(f(a + b)) = g(f(a) + f(b) = g(f(a)) + g((f(b)), because f , g are
homomorphisms (respectively). Similarly, g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)).

9. Let R, S be rings, and f : R → S an isomorphism. Let g = f−1, i.e. for all r ∈ R,
g(f(r)) = r and for all s ∈ S, f(g(s)) = s. Prove that g : S → R is an isomorphism.

First, g is a bijection because the inverse of a bijection is a bijection (or we can prove it
if we like). We have g(a + b) = g(f(g(a)) + f(g(b))) = g(f(g(a) + g(b))) = g(a) + g(b),
where we use the homomorphism property of f for the second equality. Similarly, we have
g(ab) = g(f(g(a))f(g(b))) = g(f(g(a)g(b))) = g(a)g(b).
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11. Recall the ring from HW4 #6: R has ground set Z and operations ⊕,� defined as:

a⊕ b = a + b− 1, a� b = a + b− ab

Prove that R is isomorphic to Z.

The hard part of this problem is finding the isomorphsim, which is f : R → Z via f(x) =
1 − x. We first prove a bijection; if f(x) = f(x′) then 1 − x = 1 − x′ so x = x′. Also, for
a ∈ Z we have f(1− a) = 1− (1− a) = a.
Now, f(a⊕ b) = f(a+ b− 1) = 1− (a+ b− 1) = 2− a− b = (1− a) + (1− b) = f(a) + f(b),
and f(a� b) = f(a+ b− ab) = 1− (a+ b− ab) = 1− a− b+ ab = (1− a)(1− b) = f(a)f(b).

12. Recall the ring from HW4 #7: R has ground set Z and operations ⊕,� defined as:

a⊕ b = a + b− 1, a� b = ab− a− b + 2

Prove that R is isomorphic to Z.

The hard part of this problem is finding the isomorphsim, which is f : R → Z via f(x) =
x − 1. We first prove a bijection; if f(x) = f(x′) then x − 1 = x′ − 1 so x = x′. Also, for
a ∈ Z we have f(a + 1) = (a + 1)− 1 = a.
Now, f(a ⊕ b) = f(a + b − 1) = a + b − 2 = (a − 1) + (b − 1) = f(a) + f(b), and
f(a� b) = f(ab−a− b+ 2) = ab−a− b+ 2− 1 = ab−a− b+ 1 = (a− 1)(b− 1) = f(a)f(b).


