MATH 521A: Abstract Algebra

Homework 6: Due Oct. 12

1. Let R, S be rings. Consider the embedding map $f: R \rightarrow R \times S$ given by $f: r \mapsto\left(r, 0_{S}\right)$. Prove that f is a homomorphism.
2. Let R, S be rings. Consider the projection map $f: R \times S \rightarrow R$ given by $f:(r, s) \mapsto r$. Prove that f is a homomorphism.
3. We call a ring element x idempotent if $x^{2}=x$. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose $x \in R$ is idempotent. Prove that $f(x)$ is idempotent.
4. We call a ring element x nilpotent if there is some $n \in \mathbb{N}$ such that $x^{n}=0$. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose $x \in R$ is nilpotent. Prove that $f(x)$ is nilpotent.
5. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Define the kernel of $f, \operatorname{Ker} f=$ $\left\{r \in R: f(r)=0_{S}\right\}$. Prove that Kerf is a subring of R.
6. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Prove that f is injective (one-toone) if and only if $\operatorname{Ker} f=\left\{0_{R}\right\}$.
7. Let R, S be rings, and $f: R \rightarrow S$ a homomorphism. Suppose that S_{1} is a subring of S. Prove that $f^{-1}\left(S_{1}\right)=\left\{r \in R: f(r) \in S_{1}\right\}$ is a subring of R.
8. Let R, S, T be rings, and $f: R \rightarrow S, g: S \rightarrow T$ two homomorphisms. Prove that $g \circ f: R \rightarrow T$ is a homomorphism.
9. Let R, S be rings, and $f: R \rightarrow S$ an isomorphism. Let $g=f^{-1}$, i.e. for all $r \in R$, $g(f(r))=r$ and for all $s \in S, f(g(s))=s$. Prove that $g: S \rightarrow R$ is an isomorphism.
10. Let $S=\left\{\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right): a, b \in \mathbb{Z}\right\}$, which is a subring of $M_{2,2}(\mathbb{Z})$ (two-by-two matrices with integer entries). Prove that S is isomorphic to $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$, a subring of \mathbb{R}.
11. Recall the ring from HW4 $\# 6: R$ has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a+b-a b
$$

Prove that R is isomorphic to \mathbb{Z}.
12. Recall the ring from HW4 $\# 7: R$ has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$
a \oplus b=a+b-1, \quad a \odot b=a b-a-b+2
$$

Prove that R is isomorphic to \mathbb{Z}.

