MATH 521A: Abstract Algebra Homework 6: Due Oct. 12

- 1. Let R, S be rings. Consider the *embedding* map $f : R \to R \times S$ given by $f : r \mapsto (r, 0_S)$. Prove that f is a homomorphism.
- 2. Let R, S be rings. Consider the projection map $f : R \times S \to R$ given by $f : (r, s) \mapsto r$. Prove that f is a homomorphism.
- 3. We call a ring element x idempotent if $x^2 = x$. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose $x \in R$ is idempotent. Prove that f(x) is idempotent.
- 4. We call a ring element x nilpotent if there is some $n \in \mathbb{N}$ such that $x^n = 0$. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose $x \in R$ is nilpotent. Prove that f(x) is nilpotent.
- 5. Let R, S be rings, and $f : R \to S$ a homomorphism. Define the kernel of f, $Kerf = \{r \in R : f(r) = 0_S\}$. Prove that Kerf is a subring of R.
- 6. Let R, S be rings, and $f : R \to S$ a homomorphism. Prove that f is injective (one-toone) if and only if $Kerf = \{0_R\}$.
- 7. Let R, S be rings, and $f : R \to S$ a homomorphism. Suppose that S_1 is a subring of S. Prove that $f^{-1}(S_1) = \{r \in R : f(r) \in S_1\}$ is a subring of R.
- 8. Let R, S, T be rings, and $f : R \to S, g : S \to T$ two homomorphisms. Prove that $g \circ f : R \to T$ is a homomorphism.
- 9. Let R, S be rings, and $f : R \to S$ an isomorphism. Let $g = f^{-1}$, i.e. for all $r \in R$, g(f(r)) = r and for all $s \in S$, f(g(s)) = s. Prove that $g : S \to R$ is an isomorphism.
- 10. Let $S = \{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \}$, which is a subring of $M_{2,2}(\mathbb{Z})$ (two-by-two matrices with integer entries). Prove that S is isomorphic to $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$, a subring of \mathbb{R} .
- 11. Recall the ring from HW4 #6: R has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$a \oplus b = a + b - 1$$
, $a \odot b = a + b - ab$

Prove that R is isomorphic to \mathbb{Z} .

12. Recall the ring from HW4 #7: R has ground set \mathbb{Z} and operations \oplus, \odot defined as:

$$a \oplus b = a + b - 1$$
, $a \odot b = ab - a - b + 2$

Prove that R is isomorphic to \mathbb{Z} .