MATH 521A: Abstract Algebra Homework 7 Solutions

1. List all polynomials in $\mathbb{Z}_3[x]$ of degree at most 1. Determine which are units and which are zero divisors.

There are nine¹: $a_1(x) = 0 + 0x$, $a_2(x) = 0 + x$, $a_3(x) = 0 + 2x$, $a_4(x) = 1 + 0x$, $a_5(x) = 1 + x$, $a_6(x) = 1 + 2x$, $a_7(x) = 2 + 0x$, $a_8(x) = 2 + x$, $a_9(x) = 2 + 2x$. There are no zero divisors, as $\mathbb{Z}_3[x]$ is an integral domain (since \mathbb{Z}_3 is). By a theorem from class, only $a_4(x)$ and $a_7(x)$ are units, each of which is its own reciprocal.

2. List all polynomials in $\mathbb{Z}_4[x]$ of degree at most 1. Determine which are units and which are zero divisors.

There are sixteen: $a_1(x) = 0 + 0x$, $a_2(x) = 0 + x$, $a_3(x) = 0 + 2x$, $a_4(x) = 1 + 0x$, $a_5(x) = 1 + x$, $a_6(x) = 1 + 2x$, $a_7(x) = 2 + 0x$, $a_8(x) = 2 + x$, $a_9(x) = 2 + 2x$, $a_{10}(x) = 0 + 3x$, $a_{11}(x) = 1 + 3x$, $a_{12}(x) = 2 + 3x$, $a_{13} = 3 + 3x$, $a_{14} = 3 + 2x$, $a_{15} = 3 + x$, $a_{16} = 3 + 0x$. There are three zero divisors, namely $a_3(x)$, $a_7(x)$, $a_9(x)$; multiply any two of them together to get 0. $a_4(x)$, $a_6(x)$, $a_{14}(x)$, $a_{16}(x)$ are each their own reciprocals; these are the only units. Note: in a unit of degree 1, the leading coefficient must be a zero divisor, which in this ring is just 2.

3. Let R be a commutative ring with identity. Define $f : R[x] \to R$ via $f : a_0 + a_1x + \cdots + a_nx^n \mapsto a_0$. Prove that f is a (ring) homomorphism and find its kernel and image.

We have $f(a_0 + a_1x + \dots + a_nx^n + a'_0 + a'_1x + \dots + a'_nx^n) = f((a_0 + a'_0) + (a_1 + a'_1)x + \dots + (a_n + a'_n)x^n) = a_0 + a'_0 = f(a_0 + a_1x + \dots + a_nx^n) + f(a'_0 + a'_1x + \dots + a'_nx^n)$, and $f((a_0 + a_1x + \dots + a_nx^n)(a'_0 + a'_1x + \dots + a'_nx^n)) = f(a_0a'_0 + \text{ higher order terms}) = a_0a'_0 = f(a_0 + a_1x + \dots + a_nx^n)f(a'_0 + a'_1x + \dots + a'_nx^n).$

The kernel is the set of those polynomials with zero constant term, equivalently xR[x]. We now prove that the image is R; let $a \in R$, then set p(x) = a, a constant polynomial. We have f(p) = a.

4. Let R be a commutative ring with identity. Let $a \in R$ be nilpotent. Prove that $1_R - ax$ is a unit in R[x].

Since a is nilpotent, there is some $n \in \mathbb{N}$ so that $a^n = 0$. We calculate a product of two nonzero elements: $(1_R - ax)(1_R + ax + a^2x^2 + \dots + a^{n-1}x^{n-1}) = 1_R - a^nx^n = 1_R$.

5. Working in $\mathbb{Z}_3[x]$, find gcd(a(x), b(x)), for $a(x) = x^3 + x^2 + 2x + 2$, $b(x) = x^4 + 2x^2 + x + 1$.

$$x^{4} + 2x^{2} + x + 1 = (x^{3} + x^{2} + 2x + 2)(x - 1) + (x^{2} + x)$$

$$x^{3} + x^{2} + 2x + 2 = (x^{2} + x)(x) + (2x + 2)$$

$$x^{2} + x = (2x + 2)(2x) + 0$$

Hence the gcd is the monic \mathbb{Z}_3 -multiple of 2x + 2, namely 2(2x + 2) = x + 1.

¹Assuming we take the degree of polynomial 0 to be $-\infty$. If we join our book's author and say that this degree is undefined, then remove that polynomial from the list.

6. Working in $\mathbb{Q}[x]$, find gcd(a(x), b(x)), for $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$.

$$4x^{4} + 2x^{3} + 6x^{2} + 4x + 5 = (3x^{2} + 2) \cdot (\frac{4}{3}x^{2} + \frac{2}{3}x + \frac{10}{9}) + (\frac{8}{3}x + \frac{25}{9})$$

$$3x^{2} + 2 = (\frac{8}{3}x + \frac{25}{9}) \cdot (\frac{9}{8}x - \frac{75}{64}) + \frac{1009}{192}$$

$$\frac{8}{3}x + \frac{25}{9} = \frac{1009}{192} \cdot (\frac{512}{1009}x + \frac{1600}{3027}) + 0$$

Hence the gcd is the monic \mathbb{Q} -multiple of $\frac{1009}{192}$, namely 1.

7. Working in $\mathbb{Z}_7[x]$, find gcd(a(x), b(x)), for $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$.

$$4x^{4} + 2x^{3} + 6x^{2} + 4x + 5 = (3x^{2} + 2)(6x^{2} + 3x + 5) + (5x + 2)$$
$$3x^{2} + 2 = (5x + 2)(2x + 2) + (5)$$
$$5x + 2 = (5)(x + 6) + 0$$

Hence the gcd is the monic \mathbb{Z}_7 -multiple of 5, namely 3(5) = 1.

8. Working in $\mathbb{Z}_7[x]$, let $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$. Find u(x), v(x) such that gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).

$$5 = (3x^{2} + 2) + (5x + 2)(-2x - 2)$$

= $(3x^{2} + 2) + (4x^{4} + 2x^{3} + 6x^{2} + 4x + 5) + (3x^{2} + 2)(-6x^{2} - 3x - 5))(-2x - 2)$
= $(3x^{2} + 2)(1 + (-6x^{2} - 3x - 5)(-2x - 2)) + (4x^{4} + 2x^{3} + 6x^{2} + 4x + 5)(-2x - 2))$
= $(3x^{2} + 2)(5x^{3} + 4x^{2} + 2x + 4) + (4x^{4} + 2x^{3} + 6x^{2} + 4x + 5)(5x + 5)$

We now multiply both sides by 3 to get $u(x) = 3(5x^3 + 4x^2 + 2x + 4) = x^3 + 5x^2 + 6x + 5$ and v(x) = 3(5x + 5) = x + 1.

9. Working in $\mathbb{Z}_{10}[x]$, find two degree-1 polynomials whose product is x + 7.

We have $(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$. For this to be x + 7, we must have ac = 0. Let's try a = 2, c = 5. Then we have to solve the modular system of equations $\{2d + 5b = 1, bd = 7\}$. Luckily there aren't too many combinations to try until we find b = 9, d = 3. Hence (2x + 9)(5x + 3) = x + 7.