MATH 521A: Abstract Algebra

Homework 7 Solutions

1. List all polynomials in $\mathbb{Z}_{3}[x]$ of degree at most 1 . Determine which are units and which are zero divisors.
There are nine ${ }^{1}: a_{1}(x)=0+0 x, a_{2}(x)=0+x, a_{3}(x)=0+2 x, a_{4}(x)=1+0 x, a_{5}(x)=$ $1+x, a_{6}(x)=1+2 x, a_{7}(x)=2+0 x, a_{8}(x)=2+x, a_{9}(x)=2+2 x$. There are no zero divisors, as $\mathbb{Z}_{3}[x]$ is an integral domain (since \mathbb{Z}_{3} is). By a theorem from class, only $a_{4}(x)$ and $a_{7}(x)$ are units, each of which is its own reciprocal.
2. List all polynomials in $\mathbb{Z}_{4}[x]$ of degree at most 1 . Determine which are units and which are zero divisors.
There are sixteen: $a_{1}(x)=0+0 x, a_{2}(x)=0+x, a_{3}(x)=0+2 x, a_{4}(x)=1+0 x, a_{5}(x)=$ $1+x, a_{6}(x)=1+2 x, a_{7}(x)=2+0 x, a_{8}(x)=2+x, a_{9}(x)=2+2 x, a_{10}(x)=0+3 x, a_{11}(x)=$ $1+3 x, a_{12}(x)=2+3 x, a_{13}=3+3 x, a_{14}=3+2 x, a_{15}=3+x, a_{16}=3+0 x$. There are three zero divisors, namely $a_{3}(x), a_{7}(x), a_{9}(x)$; multiply any two of them together to get 0 . $a_{4}(x), a_{6}(x), a_{14}(x), a_{16}(x)$ are each their own reciprocals; these are the only units. Note: in a unit of degree 1 , the leading coefficient must be a zero divisor, which in this ring is just 2 .
3. Let R be a commutative ring with identity. Define $f: R[x] \rightarrow R$ via $f: a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto$ a_{0}. Prove that f is a (ring) homomorphism and find its kernel and image.
We have $f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}+a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{n}^{\prime} x^{n}\right)=f\left(\left(a_{0}+a_{0}^{\prime}\right)+\left(a_{1}+a_{1}^{\prime}\right) x+\right.$ $\left.\cdots+\left(a_{n}+a_{n}^{\prime}\right) x^{n}\right)=a_{0}+a_{0}^{\prime}=f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+f\left(a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{n}^{\prime} x^{n}\right)$, and $f\left(\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)\left(a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{n}^{\prime} x^{n}\right)\right)=f\left(a_{0} a_{0}^{\prime}+\right.$ higher order terms $)=a_{0} a_{0}^{\prime}=$ $f\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) f\left(a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{n}^{\prime} x^{n}\right)$.
The kernel is the set of those polynomials with zero constant term, equivalently $x R[x]$. We now prove that the image is R; let $a \in R$, then set $p(x)=a$, a constant polynomial. We have $f(p)=a$.
4. Let R be a commutative ring with identity. Let $a \in R$ be nilpotent. Prove that $1_{R}-a x$ is a unit in $R[x]$.
Since a is nilpotent, there is some $n \in \mathbb{N}$ so that $a^{n}=0$. We calculate a product of two nonzero elements: $\left(1_{R}-a x\right)\left(1_{R}+a x+a^{2} x^{2}+\cdots+a^{n-1} x^{n-1}\right)=1_{R}-a^{n} x^{n}=1_{R}$.
5. Working in $\mathbb{Z}_{3}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+2 x+2, b(x)=x^{4}+2 x^{2}+x+1$.

$$
\begin{aligned}
x^{4}+2 x^{2}+x+1 & =\left(x^{3}+x^{2}+2 x+2\right)(x-1)+\left(x^{2}+x\right) \\
x^{3}+x^{2}+2 x+2 & =\left(x^{2}+x\right)(x)+(2 x+2) \\
x^{2}+x & =(2 x+2)(2 x)+0
\end{aligned}
$$

Hence the gcd is the monic \mathbb{Z}_{3}-multiple of $2 x+2$, namely $2(2 x+2)=x+1$.

[^0]6. Working in $\mathbb{Q}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$.
\[

$$
\begin{aligned}
4 x^{4}+2 x^{3}+6 x^{2}+4 x+5 & =\left(3 x^{2}+2\right) \cdot\left(\frac{4}{3} x^{2}+\frac{2}{3} x+\frac{10}{9}\right)+\left(\frac{8}{3} x+\frac{25}{9}\right) \\
3 x^{2}+2 & =\left(\frac{8}{3} x+\frac{25}{9}\right) \cdot\left(\frac{9}{8} x-\frac{75}{64}\right)+\frac{1009}{192} \\
\frac{8}{3} x+\frac{25}{9} & =\frac{1009}{192} \cdot\left(\frac{512}{1009} x+\frac{1600}{3027}\right)+0
\end{aligned}
$$
\]

Hence the gcd is the monic \mathbb{Q}-multiple of $\frac{1009}{192}$, namely 1 .
7. Working in $\mathbb{Z}_{7}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$.

$$
\begin{aligned}
4 x^{4}+2 x^{3}+6 x^{2}+4 x+5 & =\left(3 x^{2}+2\right)\left(6 x^{2}+3 x+5\right)+(5 x+2) \\
3 x^{2}+2 & =(5 x+2)(2 x+2)+(5) \\
5 x+2 & =(5)(x+6)+0
\end{aligned}
$$

Hence the gcd is the monic \mathbb{Z}_{7}-multiple of 5 , namely $3(5)=1$.
8. Working in $\mathbb{Z}_{7}[x]$, let $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.

$$
\begin{aligned}
5 & =\left(3 x^{2}+2\right)+(5 x+2)(-2 x-2) \\
& \left.=\left(3 x^{2}+2\right)+\left(4 x^{4}+2 x^{3}+6 x^{2}+4 x+5\right)+\left(3 x^{2}+2\right)\left(-6 x^{2}-3 x-5\right)\right)(-2 x-2) \\
& =\left(3 x^{2}+2\right)\left(1+\left(-6 x^{2}-3 x-5\right)(-2 x-2)\right)+\left(4 x^{4}+2 x^{3}+6 x^{2}+4 x+5\right)(-2 x-2) \\
& =\left(3 x^{2}+2\right)\left(5 x^{3}+4 x^{2}+2 x+4\right)+\left(4 x^{4}+2 x^{3}+6 x^{2}+4 x+5\right)(5 x+5)
\end{aligned}
$$

We now multiply both sides by 3 to get $u(x)=3\left(5 x^{3}+4 x^{2}+2 x+4\right)=x^{3}+5 x^{2}+6 x+5$ and $v(x)=3(5 x+5)=x+1$.
9. Working in $\mathbb{Z}_{10}[x]$, find two degree- 1 polynomials whose product is $x+7$.

We have $(a x+b)(c x+d)=a c x^{2}+(a d+b c) x+b d$. For this to be $x+7$, we must have $a c=0$. Let's try $a=2, c=5$. Then we have to solve the modular system of equations $\{2 d+5 b=1, b d=7\}$. Luckily there aren't too many combinations to try until we find $b=9, d=3$. Hence $(2 x+9)(5 x+3)=x+7$.

[^0]: ${ }^{1}$ Assuming we take the degree of polynomial 0 to be $-\infty$. If we join our book's author and say that this degree is undefined, then remove that polynomial from the list.

