MATH 521A: Abstract Algebra Homework 7: Due Oct. 26

- 1. List all polynomials in $\mathbb{Z}_3[x]$ of degree at most 1. Determine which are units and which are zero divisors.
- 2. List all polynomials in $\mathbb{Z}_4[x]$ of degree at most 1. Determine which are units and which are zero divisors.
- 3. Let R be a commutative ring with identity. Define $f : R[x] \to R$ via $f : a_0 + a_1x + \cdots + a_nx^n \mapsto a_0$. Prove that f is a (ring) homomorphism and find its kernel and image.
- 4. Let R be a commutative ring with identity. Let $a \in R$ be nilpotent. Prove that $1_R ax$ is a unit in R[x].
- 5. Working in $\mathbb{Z}_3[x]$, find gcd(a(x), b(x)), for $a(x) = x^3 + x^2 + 2x + 2$, $b(x) = x^4 + 2x^2 + x + 1$.
- 6. Working in $\mathbb{Z}[x]$, find gcd(a(x), b(x)), for $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$.
- 7. Working in $\mathbb{Z}_7[x]$, find gcd(a(x), b(x)), for $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$.
- 8. Working in $\mathbb{Z}_7[x]$, let $a(x) = 3x^2 + 2$, $b(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$. Find u(x), v(x) such that gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).
- 9. Working in $\mathbb{Z}_{10}[x]$, find two degree-1 polynomials whose product is x + 7.