MATH 521A: Abstract Algebra

Homework 7: Due Oct. 26

1. List all polynomials in $\mathbb{Z}_{3}[x]$ of degree at most 1 . Determine which are units and which are zero divisors.
2. List all polynomials in $\mathbb{Z}_{4}[x]$ of degree at most 1 . Determine which are units and which are zero divisors.
3. Let R be a commutative ring with identity. Define $f: R[x] \rightarrow R$ via $f: a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n} \mapsto a_{0}$. Prove that f is a (ring) homomorphism and find its kernel and image.
4. Let R be a commutative ring with identity. Let $a \in R$ be nilpotent. Prove that $1_{R}-a x$ is a unit in $R[x]$.
5. Working in $\mathbb{Z}_{3}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+2 x+2, b(x)=x^{4}+2 x^{2}+x+1$.
6. Working in $\mathbb{Z}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$.
7. Working in $\mathbb{Z}_{7}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$.
8. Working in $\mathbb{Z}_{7}[x]$, let $a(x)=3 x^{2}+2, b(x)=4 x^{4}+2 x^{3}+6 x^{2}+4 x+5$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.
9. Working in $\mathbb{Z}_{10}[x]$, find two degree- 1 polynomials whose product is $x+7$.
