
MATH 521A: Abstract Algebra
Homework 8 Solutions

1. Find all irreducible polynomials of degree at most 3 in Z2[x].

All linear polynomials are irreducible, which in this case are x, x + 1. We have x · x =
x2, (x+ 1)(x+ 1) = x2 + 1, x(x+ 1) = x2 +x; these are reducible. Hence the only irreducible
degree-2 polynomial is x2 +x+ 1. We have x3 = x ·x2, x3 + 1 = (x2 +x+ 1)(x+ 1), x3 +x =
x(x+ 1)2, x3 + x2 = x2(x+ 1), x3 + x2 + x = x(x2 + x+ 1), x3 + x2 + x+ 1 = (x+ 1)3. This
leaves two irreducible degree-3 polynomials: x3 + x2 + 1, x3 + x+ 1.

2. Express x4 − 4 as a product of irreducibles in Q[x],R[x],C[x],Z3[x].

Q[x]: (x2 − 2)(x2 + 2), where each is irreducible because each is degree 2 and neither has a
root in Q.
R[x]: (x−

√
2)(x+

√
2)(x2 + 2), where x2 + 2 is irreducible since it has no root in R.

C[x]: (x−
√

2)(x+
√

2)(x+
√

2i)(x−
√

2i). Finally the polynomial splits.
Z3[x]: Write x4 − 4 = x4 − 1 = (x+ 1)(x− 1)(x2 + 1), where x2 + 1 is irreducible since it is
degree 2 and has no root in Z3.

3. Prove that x3 − 2 is irreducible in Z7[x].

Note that, in Z7, 03 = 0, 13 = 1, 23 = 1, 33 = 6, 43 = 1, 53 = 6, 63 = 6. Since none of these
are 2, x3 − 2 has no root; since it is of degree 3 it is therefore irreducible in Z7[x].

4. Find all roots of x2 + 11 in Z12[x].

Note that, in Z12, 02 = 0,12 = 1, 22 = 4, 32 = 9, 42 = 4,52 = 1, 62 = 0,72 = 1, 82 = 4, 92 =
9, 102 = 4,112 = 1. Hence this degree-2 polynomial has FOUR roots: 1, 5, 7, 11. This can
happen when your coefficients are drawn from a ring (not a field).

5. Express x11 − x as a product of irreducibles in Z11[x]. Hint: FLT.

By Fermat’s Little Theorem, since 11 is prime, for all x: x11 ≡ x (mod 11). Hence this
polynomial splits, i.e. has all linear factors. We have x11 − x = x(x− 1)(x− 2)(x− 3)(x−
4)(x− 5)(x− 6)(x− 7)(x− 8)(x− 9)(x− 10).

Note: this same method can be used to prove Wilson’s theorem. Look at the coefficient of x
on both sides; on the left it is −1, while on the right it is (−1)(−2) · · · (−10) = (−1)1010! =
10!. Hence 10! ≡ −1 (mod 11).

6. Suppose F ⊆ K are both fields. Let f ∈ F [x] ⊆ K[x]. Suppose that f is irreducible in K[x].
Prove that f is also irreducible in F [x].

Suppose, by way of contradiction, that f is reducible in F [x]. Then we may write f = gh,
where g, h ∈ F [x] are nonconstant polynomials. Since F ⊆ K, also F [x] ⊆ K[x] so g, h ∈
K[x] and now f is reducible in K[x], a contradiction.

7. Suppose p(x) is irreducible in F [x], and a ∈ F is nonzero. Prove that ap(x) is also irreducible.

Suppose, by way of contradiction, that ap(x) is reducible in F [x]. Then we may write
ap(x) = g(x)h(x), where g, h ∈ F [x] are nonconstant polynomials. Since F is a field and



a is nonzero, there is some b ∈ F with ab = 1. Hence bap(x) = bg(x)h(x), and thus
p(x) = (bg(x))h(x). Now, the leading coefficient of bg(x) has the same degree as the leading
coefficient of g(x), since b is nonzero and F is an integral domain. Thus bg(x) and h(x) are
both nonconstant polynomials whose product is p(x). Thus p(x) is reducible, a contradiction.

8. Let f(x) = a0 + a1x + · · · + an−1x
n−1 + anx

n ∈ F [x]. Define f(x) = an + an−1x + · · · +
a1x

n−1 + a0x
n ∈ F [x]. Suppose that c 6= 0 is a zero of f(x). Prove that c−1 is a zero of f(x).

Since c is a zero of f(x), we have 0 = f(c) = a0 + a1c + · · · + an−1c
n−1 + anc

n. Multiply
both sides by (c−1)n to get 0 = a0(c

−1)n + a1c(c
−1)n + · · · + an−1c

n−1(c−1)n + anc
n(c−1)n =

a0(c
−1)n + a1(c

−1)n−1 + · · ·+ an−1(c
−1)1 + an = f(c−1).

9. Let a ∈ F and define φa : F [x] → F via φa : f(x) 7→ f(a). Prove that φa is a surjective
(ring) homomorphism.

We first prove φa is a homomorphism. φa(f +g) = (f +g)(a) = f(a) +g(a) = φa(f) +φa(g),
and φa(fg) = (fg)(a) = f(a)g(a) = φa(f)φa(g). To prove φa surjective, let c ∈ F . Take
f(x) = c, the constant polynomial. We have φa(f) = c.

10. Define Q[
√

2] = {r0 + r1
√

2 + r2(
√

2)2 + · · · + rn(
√

2)n : n ≥ 0, ri ∈ Q}. Note that this
definition differs from our previous one for Q[

√
2] (although they can be proved equivalent).

Consider the function φ : Q[x] → Q[
√

2] via φ : f(x) 7→ f(
√

2). Prove that φ is a (ring)
homomorphism, is surjective, and is not injective.

Let f(x) =
∑

n≥0 anx
n, g(x) =

∑
n≥0 bnx

n be arbitrary polynomials in Q[x], both finite

sums. We have φ(f + g) = φ(
∑

n≥0(an + bn)xn) =
∑

n≥0(an + bn)
√

2
n

=
∑

n≥0 an
√

2
n

+∑
n≥0 bn

√
2
n

= φ(f) + φ(g). Setting cn =
∑n

i=0 aibn−i, we have φ(fg) = φ(
∑

n≥0 cnx
n) =∑

n≥0 cn
√

2
n

=
(∑

n≥0 an
√

2
n
)(∑

n≥0 bn
√

2
n
)

= φ(f)φ(g). Hence φ is a homomorphism.

Given an arbitrary r =
∑

n≥0 rn
√

2
n ∈ Q[

√
2], we set f(x) =

∑
n≥0 rnx

n (taking ri = 0 for
i > n), and have φ(f) = r. Hence φ is surjective.

Lastly, we note that φ(2) = φ(x2) = 2, so φ is not injective.


