MATH 521A: Abstract Algebra

Homework 8 Solutions

1. Find all irreducible polynomials of degree at most 3 in $\mathbb{Z}_2[x]$.

All linear polynomials are irreducible, which in this case are x, x + 1. We have $x \cdot x = x^2, (x+1)(x+1) = x^2 + 1, x(x+1) = x^2 + x$; these are reducible. Hence the only irreducible degree-2 polynomial is $x^2 + x + 1$. We have $x^3 = x \cdot x^2, x^3 + 1 = (x^2 + x + 1)(x+1), x^3 + x = x(x+1)^2, x^3 + x^2 = x^2(x+1), x^3 + x^2 + x = x(x^2 + x + 1), x^3 + x^2 + x + 1 = (x+1)^3$. This leaves two irreducible degree-3 polynomials: $x^3 + x^2 + 1, x^3 + x + 1$.

2. Express $x^4 - 4$ as a product of irreducibles in $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x], \mathbb{Z}_3[x]$.

 $\mathbb{Q}[x]$: $(x^2 - 2)(x^2 + 2)$, where each is irreducible because each is degree 2 and neither has a root in \mathbb{Q} . $\mathbb{R}[x]$: $(x - \sqrt{2})(x + \sqrt{2})(x^2 + 2)$, where $x^2 + 2$ is irreducible since it has no root in \mathbb{R} . $\mathbb{C}[x]$: $(x - \sqrt{2})(x + \sqrt{2})(x + \sqrt{2}i)(x - \sqrt{2}i)$. Finally the polynomial splits.

 $\mathbb{Z}_3[x]$: Write $x^4 - 4 = x^4 - 1 = (x+1)(x-1)(x^2+1)$, where $x^2 + 1$ is irreducible since it is degree 2 and has no root in \mathbb{Z}_3 .

3. Prove that $x^3 - 2$ is irreducible in $\mathbb{Z}_7[x]$.

Note that, in \mathbb{Z}_7 , $0^3 = 0$, $1^3 = 1$, $2^3 = 1$, $3^3 = 6$, $4^3 = 1$, $5^3 = 6$, $6^3 = 6$. Since none of these are 2, $x^3 - 2$ has no root; since it is of degree 3 it is therefore irreducible in $\mathbb{Z}_7[x]$.

4. Find all roots of $x^2 + 11$ in $\mathbb{Z}_{12}[x]$.

Note that, in \mathbb{Z}_{12} , $0^2 = 0$, $\mathbf{1}^2 = \mathbf{1}$, $2^2 = 4$, $3^2 = 9$, $4^2 = 4$, $\mathbf{5}^2 = \mathbf{1}$, $6^2 = 0$, $\mathbf{7}^2 = \mathbf{1}$, $8^2 = 4$, $9^2 = 9$, $10^2 = 4$, $\mathbf{11}^2 = \mathbf{1}$. Hence this degree-2 polynomial has FOUR roots: 1, 5, 7, 11. This can happen when your coefficients are drawn from a ring (not a field).

5. Express $x^{11} - x$ as a product of irreducibles in $\mathbb{Z}_{11}[x]$. Hint: FLT.

By Fermat's Little Theorem, since 11 is prime, for all x: $x^{11} \equiv x \pmod{11}$. Hence this polynomial splits, i.e. has all linear factors. We have $x^{11} - x = x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)$.

Note: this same method can be used to prove Wilson's theorem. Look at the coefficient of x on both sides; on the left it is -1, while on the right it is $(-1)(-2)\cdots(-10) = (-1)^{10}10! = 10!$. Hence $10! \equiv -1 \pmod{11}$.

6. Suppose $F \subseteq K$ are both fields. Let $f \in F[x] \subseteq K[x]$. Suppose that f is irreducible in K[x]. Prove that f is also irreducible in F[x].

Suppose, by way of contradiction, that f is reducible in F[x]. Then we may write f = gh, where $g, h \in F[x]$ are nonconstant polynomials. Since $F \subseteq K$, also $F[x] \subseteq K[x]$ so $g, h \in K[x]$ and now f is reducible in K[x], a contradiction.

7. Suppose p(x) is irreducible in F[x], and $a \in F$ is nonzero. Prove that ap(x) is also irreducible. Suppose, by way of contradiction, that ap(x) is reducible in F[x]. Then we may write ap(x) = g(x)h(x), where $g, h \in F[x]$ are nonconstant polynomials. Since F is a field and a is nonzero, there is some $b \in F$ with ab = 1. Hence bap(x) = bg(x)h(x), and thus p(x) = (bg(x))h(x). Now, the leading coefficient of bg(x) has the same degree as the leading coefficient of g(x), since b is nonzero and F is an integral domain. Thus bg(x) and h(x) are both nonconstant polynomials whose product is p(x). Thus p(x) is reducible, a contradiction.

8. Let $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n \in F[x]$. Define $\overline{f}(x) = a_n + a_{n-1} x + \dots + a_1 x^{n-1} + a_0 x^n \in F[x]$. Suppose that $c \neq 0$ is a zero of f(x). Prove that c^{-1} is a zero of $\overline{f}(x)$.

Since c is a zero of f(x), we have $0 = f(c) = a_0 + a_1c + \dots + a_{n-1}c^{n-1} + a_nc^n$. Multiply both sides by $(c^{-1})^n$ to get $0 = a_0(c^{-1})^n + a_1c(c^{-1})^n + \dots + a_{n-1}c^{n-1}(c^{-1})^n + a_nc^n(c^{-1})^n = a_0(c^{-1})^n + a_1(c^{-1})^{n-1} + \dots + a_{n-1}(c^{-1})^1 + a_n = \overline{f}(c^{-1}).$

9. Let $a \in F$ and define $\phi_a : F[x] \to F$ via $\phi_a : f(x) \mapsto f(a)$. Prove that ϕ_a is a surjective (ring) homomorphism.

We first prove ϕ_a is a homomorphism. $\phi_a(f+g) = (f+g)(a) = f(a) + g(a) = \phi_a(f) + \phi_a(g)$, and $\phi_a(fg) = (fg)(a) = f(a)g(a) = \phi_a(f)\phi_a(g)$. To prove ϕ_a surjective, let $c \in F$. Take f(x) = c, the constant polynomial. We have $\phi_a(f) = c$.

10. Define $\mathbb{Q}[\sqrt{2}] = \{r_0 + r_1\sqrt{2} + r_2(\sqrt{2})^2 + \dots + r_n(\sqrt{2})^n : n \ge 0, r_i \in \mathbb{Q}\}$. Note that this definition differs from our previous one for $\mathbb{Q}[\sqrt{2}]$ (although they can be proved equivalent). Consider the function $\phi : \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$ via $\phi : f(x) \mapsto f(\sqrt{2})$. Prove that ϕ is a (ring) homomorphism, is surjective, and is not injective. Let $f(x) = \sum_{n\ge 0} a_n x^n$, $g(x) = \sum_{n\ge 0} b_n x^n$ be arbitrary polynomials in $\mathbb{Q}[x]$, both finite

sums. We have $\phi(f+g) = \phi(\sum_{n\geq 0} a_n \sqrt{2}^n) = \sum_{n\geq 0} a_n \sqrt{2}^n + \sum_{n\geq 0} b_n \sqrt{2}^n = \phi(f) + \phi(g)$. Setting $c_n = \sum_{i=0}^n a_i b_{n-i}$, we have $\phi(fg) = \phi(\sum_{n\geq 0} c_n x^n) = \sum_{n\geq 0} c_n \sqrt{2}^n = \left(\sum_{n\geq 0} a_n \sqrt{2}^n\right) \left(\sum_{n\geq 0} b_n \sqrt{2}^n\right) = \phi(f)\phi(g)$. Hence ϕ is a homomorphism.

Given an arbitrary $r = \sum_{n \ge 0} r_n \sqrt{2}^n \in \mathbb{Q}[\sqrt{2}]$, we set $f(x) = \sum_{n \ge 0} r_n x^n$ (taking $r_i = 0$ for i > n), and have $\phi(f) = r$. Hence ϕ is surjective.

Lastly, we note that $\phi(2) = \phi(x^2) = 2$, so ϕ is not injective.