MATH 521A: Abstract Algebra

Homework 8 Solutions

1. Find all irreducible polynomials of degree at most 3 in $\mathbb{Z}_{2}[x]$.

All linear polynomials are irreducible, which in this case are $x, x+1$. We have $x \cdot x=$ $x^{2},(x+1)(x+1)=x^{2}+1, x(x+1)=x^{2}+x$; these are reducible. Hence the only irreducible degree-2 polynomial is $x^{2}+x+1$. We have $x^{3}=x \cdot x^{2}, x^{3}+1=\left(x^{2}+x+1\right)(x+1), x^{3}+x=$ $x(x+1)^{2}, x^{3}+x^{2}=x^{2}(x+1), x^{3}+x^{2}+x=x\left(x^{2}+x+1\right), x^{3}+x^{2}+x+1=(x+1)^{3}$. This leaves two irreducible degree-3 polynomials: $x^{3}+x^{2}+1, x^{3}+x+1$.
2. Express $x^{4}-4$ as a product of irreducibles in $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x], \mathbb{Z}_{3}[x]$.
$\mathbb{Q}[x]:\left(x^{2}-2\right)\left(x^{2}+2\right)$, where each is irreducible because each is degree 2 and neither has a root in \mathbb{Q}.
$\mathbb{R}[x]:(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+2\right)$, where $x^{2}+2$ is irreducible since it has no root in \mathbb{R}.
$\mathbb{C}[x]:(x-\sqrt{2})(x+\sqrt{2})(x+\sqrt{2} i)(x-\sqrt{2} i)$. Finally the polynomial splits.
$\mathbb{Z}_{3}[x]$: Write $x^{4}-4=x^{4}-1=(x+1)(x-1)\left(x^{2}+1\right)$, where $x^{2}+1$ is irreducible since it is degree 2 and has no root in \mathbb{Z}_{3}.
3. Prove that $x^{3}-2$ is irreducible in $\mathbb{Z}_{7}[x]$.

Note that, in $\mathbb{Z}_{7}, 0^{3}=0,1^{3}=1,2^{3}=1,3^{3}=6,4^{3}=1,5^{3}=6,6^{3}=6$. Since none of these are $2, x^{3}-2$ has no root; since it is of degree 3 it is therefore irreducible in $\mathbb{Z}_{7}[x]$.
4. Find all roots of $x^{2}+11$ in $\mathbb{Z}_{12}[x]$.

Note that, in $\mathbb{Z}_{12}, 0^{2}=0, \mathbf{1}^{\mathbf{2}}=\mathbf{1}, 2^{2}=4,3^{2}=9,4^{2}=4, \mathbf{5}^{\mathbf{2}}=\mathbf{1}, 6^{2}=0, \boldsymbol{7}^{\mathbf{2}}=\mathbf{1}, 8^{2}=4,9^{2}=$ $9,10^{2}=4, \mathbf{1 1}^{\mathbf{2}}=\mathbf{1}$. Hence this degree-2 polynomial has FOUR roots: $1,5,7,11$. This can happen when your coefficients are drawn from a ring (not a field).
5. Express $x^{11}-x$ as a product of irreducibles in $\mathbb{Z}_{11}[x]$. Hint: FLT.

By Fermat's Little Theorem, since 11 is prime, for all $x: x^{11} \equiv x(\bmod 11)$. Hence this polynomial splits, i.e. has all linear factors. We have $x^{11}-x=x(x-1)(x-2)(x-3)(x-$ $4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)$.
Note: this same method can be used to prove Wilson's theorem. Look at the coefficient of x on both sides; on the left it is -1 , while on the right it is $(-1)(-2) \cdots(-10)=(-1){ }^{10} 10!=$ 10 !. Hence $10!\equiv-1(\bmod 11)$.
6. Suppose $F \subseteq K$ are both fields. Let $f \in F[x] \subseteq K[x]$. Suppose that f is irreducible in $K[x]$. Prove that f is also irreducible in $F[x]$.
Suppose, by way of contradiction, that f is reducible in $F[x]$. Then we may write $f=g h$, where $g, h \in F[x]$ are nonconstant polynomials. Since $F \subseteq K$, also $F[x] \subseteq K[x]$ so $g, h \in$ $K[x]$ and now f is reducible in $K[x]$, a contradiction.
7. Suppose $p(x)$ is irreducible in $F[x]$, and $a \in F$ is nonzero. Prove that $a p(x)$ is also irreducible.

Suppose, by way of contradiction, that $a p(x)$ is reducible in $F[x]$. Then we may write $a p(x)=g(x) h(x)$, where $g, h \in F[x]$ are nonconstant polynomials. Since F is a field and
a is nonzero, there is some $b \in F$ with $a b=1$. Hence $b a p(x)=b g(x) h(x)$, and thus $p(x)=(b g(x)) h(x)$. Now, the leading coefficient of $b g(x)$ has the same degree as the leading coefficient of $g(x)$, since b is nonzero and F is an integral domain. Thus $b g(x)$ and $h(x)$ are both nonconstant polynomials whose product is $p(x)$. Thus $p(x)$ is reducible, a contradiction.
8. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \in F[x]$. Define $\bar{f}(x)=a_{n}+a_{n-1} x+\cdots+$ $a_{1} x^{n-1}+a_{0} x^{n} \in F[x]$. Suppose that $c \neq 0$ is a zero of $f(x)$. Prove that c^{-1} is a zero of $\bar{f}(x)$.
Since c is a zero of $f(x)$, we have $0=f(c)=a_{0}+a_{1} c+\cdots+a_{n-1} c^{n-1}+a_{n} c^{n}$. Multiply both sides by $\left(c^{-1}\right)^{n}$ to get $0=a_{0}\left(c^{-1}\right)^{n}+a_{1} c\left(c^{-1}\right)^{n}+\cdots+a_{n-1} c^{n-1}\left(c^{-1}\right)^{n}+a_{n} c^{n}\left(c^{-1}\right)^{n}=$ $a_{0}\left(c^{-1}\right)^{n}+a_{1}\left(c^{-1}\right)^{n-1}+\cdots+a_{n-1}\left(c^{-1}\right)^{1}+a_{n}=\bar{f}\left(c^{-1}\right)$.
9. Let $a \in F$ and define $\phi_{a}: F[x] \rightarrow F$ via $\phi_{a}: f(x) \mapsto f(a)$. Prove that ϕ_{a} is a surjective (ring) homomorphism.

We first prove ϕ_{a} is a homomorphism. $\phi_{a}(f+g)=(f+g)(a)=f(a)+g(a)=\phi_{a}(f)+\phi_{a}(g)$, and $\phi_{a}(f g)=(f g)(a)=f(a) g(a)=\phi_{a}(f) \phi_{a}(g)$. To prove ϕ_{a} surjective, let $c \in F$. Take $f(x)=c$, the constant polynomial. We have $\phi_{a}(f)=c$.
10. Define $\mathbb{Q}[\sqrt{2}]=\left\{r_{0}+r_{1} \sqrt{2}+r_{2}(\sqrt{2})^{2}+\cdots+r_{n}(\sqrt{2})^{n}: n \geq 0, r_{i} \in \mathbb{Q}\right\}$. Note that this definition differs from our previous one for $\mathbb{Q}[\sqrt{2}]$ (although they can be proved equivalent). Consider the function $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}]$ via $\phi: f(x) \mapsto f(\sqrt{2})$. Prove that ϕ is a (ring) homomorphism, is surjective, and is not injective.
Let $f(x)=\sum_{n \geq 0} a_{n} x^{n}, g(x)=\sum_{n \geq 0} b_{n} x^{n}$ be arbitrary polynomials in $\mathbb{Q}[x]$, both finite sums. We have $\phi(f+g)=\phi\left(\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n}\right)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) \sqrt{2}^{n}=\sum_{n \geq 0} a_{n} \sqrt{2}^{n}+$ $\sum_{n \geq 0} b_{n} \sqrt{2}^{n}=\phi(f)+\phi(g)$. Setting $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$, we have $\phi(f g)=\phi\left(\sum_{n \geq 0} c_{n} x^{n}\right)=$ $\sum_{n \geq 0} c_{n} \sqrt{2}^{n}=\left(\sum_{n \geq 0} a_{n} \sqrt{2}^{n}\right)\left(\sum_{n \geq 0} b_{n} \sqrt{2}^{n}\right)=\phi(f) \phi(g)$. Hence ϕ is a homomorphism.
Given an arbitrary $r=\sum_{n \geq 0} r_{n} \sqrt{2}^{n} \in \mathbb{Q}[\sqrt{2}]$, we set $f(x)=\sum_{n \geq 0} r_{n} x^{n}$ (taking $r_{i}=0$ for $i>n$), and have $\phi(f)=r$. Hence ϕ is surjective.
Lastly, we note that $\phi(2)=\phi\left(x^{2}\right)=2$, so ϕ is not injective.

