MATH 521A: Abstract Algebra

Homework 8: Due Nov. 2

1. Find all irreducible polynomials of degree at most 3 in $\mathbb{Z}_{2}[x]$.
2. Express $x^{4}-4$ as a product of irreducibles in $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x], \mathbb{Z}_{3}[x]$.
3. Prove that $x^{3}-2$ is irreducible in $\mathbb{Z}_{7}[x]$.
4. Find all roots of $x^{2}+11$ in $\mathbb{Z}_{12}[x]$.
5. Express $x^{11}-x$ as a product of irreducibles in $\mathbb{Z}_{11}[x]$. Hint: FLT.
6. Suppose $F \subseteq K$ are both fields. Let $f \in F[x] \subseteq K[x]$. Suppose that f is irreducible in $K[x]$. Prove that f is also irreducible in $F[x]$.
7. Suppose $p(x)$ is irreducible in $F[x]$, and $a \in F$ is nonzero. Prove that $a p(x)$ is also irreducible.
8. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \in F[x]$. Define $\bar{f}(x)=a_{n}+a_{n-1} x+\cdots+$ $a_{1} x^{n-1}+a_{0} x^{n} \in F[x]$. Suppose that $c \neq 0$ is a zero of $f(x)$. Prove that c^{-1} is a zero of $\bar{f}(x)$.
9. Let $a \in F$ and define $\phi_{a}: F[x] \rightarrow F$ via $\phi_{a}: f(x) \mapsto f(a)$. Prove that ϕ_{a} is a surjective (ring) homomorphism.
10. Define $\mathbb{Q}[\sqrt{2}]=\left\{r_{0}+r_{1} \sqrt{2}+r_{2}(\sqrt{2})^{2}+\cdots+r_{n}(\sqrt{2})^{n}: n \geq 0, r_{i} \in \mathbb{Q}\right\}$. Note that this definition differs from our previous one for $\mathbb{Q}[\sqrt{2}]$ (although they can be proved equivalent). Consider the function $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}]$ via $\phi: f(x) \mapsto f(\sqrt{2})$. Prove that ϕ is a (ring) homomorphism, is surjective, and is not injective.
