
MATH 521A: Abstract Algebra
Homework 9 Solutions

1. Find the equivalence classes, and rules for addition and multiplication, in Q[x]/(x2 − 2).

The equivalence classes are [ax+b], for every a, b ∈ Q. We have [ax+b]+[cx+d] = [(a+c)x+(b+d)],
and [ax + b][cx + d] = [(ad + bc)x + (2ac + bd)].

2. Find the equivalence classes, and rules for addition and multiplication, in Q[x]/(x2).

The equivalence classes are [ax+b], for every a, b ∈ Q. We have [ax+b]+[cx+d] = [(a+c)x+(b+d)],
and [ax + b][cx + d] = [(ad + bc)x + bd].

3. Find the equivalence classes, and rules for addition and multiplication, in Q[x]/(x2 + 1).

The equivalence classes are [ax+b], for every a, b ∈ Q. We have [ax+b]+[cx+d] = [(a+c)x+(b+d)],
and [ax + b][cx + d] = [(ad + bc)x + (−ac + bd)].

4. For exercises 1-3, find all the units and zero divisors.

In problems 1, 3, the rings are actually fields since x2 − 2 and x2 + 1 are both irreducible over Q
(using the rational root test). Hence every element, except [0x + 0], is a unit, and there are no
zero divisors. In problem 2, the nonzero elements [ax] are all zero divisors, for any nonzero a ∈ Q,
because [ax][x] = [0]. All other nonzero elements may be written as [ax + b] with b 6= 0 and a
arbitrary. We have [ax + b][− a

b2
x + 1

b ] = [1], so [ax + b] is a unit.

5. For exercises 1-3, find the inverse of [3x− 2] (in each respective ring).

Exercise 1: Suppose [3x− 2][ax+ b] = [1]. We multiply and get the system of equations {3b− 2a =
0,−2b + 6a = 1}, which we solve. Hence [3x− 2][ 1

14(3x + 2)] = [1].
Exercise 2: As above, [3x− 2][−3

4x−
1
2 ] = [1].

Exercise 3: Suppose again [3x − 2][ax + b] = [1]. This time we get {3b − 2a = 0,−2b − 3a = 1},
which we solve and conclude [3x− 2][ 1

13(−3x− 2)] = [1].

6. Find a zero divisor in Z2[x]/(x4 + x2 + 1).

Note that [x4 + x2 + 1] = [0], so what we’re looking for is a nontrivial divisor of x4 + x2 + 1, over
Z2. This has no roots, but fortunately we can factor x4 +x2 + 1 = (x2 +x+ 1)2. Hence [x2 +x+ 1]
is a zero divisor, as are it multiples [x3 + x2 + x] and [x3 + 1].

7. If f(x) ∈ F [x] has degree n, prove that there is an extension field E of F so that f(x) splits. That
is, f(x) = c0(x− c1)(x− c2) · · · (x− cn) for some (not necessarily distinct) ci ∈ E. Prove that the
degree of E over F is at most n!.

We prove this by induction on n. If n = 1 then f(x) already splits in F , and [F : F ] = 1 = 1!. This
completes the base case.

We first assume that f(x) is irreducible. Set G = F [x]/(f(x)). G contains a root r of f , so by the
root theorem, in G[x], we have f(x) = (x− r)g(x), for some polynomial g(x) of degree n− 1. We
have [G : F ] = n. By the inductive hypothesis, there is some extension field E of G in which g(x)
splits, with [E : G] ≤ (n− 1)!. We have [E : F ] = [E : G][G : F ] ≤ (n− 1)!n = n!.

We now assume that f(x) is reducible, i.e. f(x) = g(x)h(x). Suppose deg(g) = k and deg(h) = n−k,
both positive integers. We apply the inductive hypothesis to find an extension field G of F so that
g(x) splits. Hence, in G[x], we have f(x) = (linear factors)h(x). Now we apply the inductive
hypothesis again to find an extension field E of G so that h(x) splits. We have [E : F ] = [E : G][G :
F ] ≤ k!(n − k)!. But we know that the binomial coefficient n!

k!(n−k)! is an integer, so in particular

k!(n− k)! ≤ n!.



8. Let f(x) = x3 + x + 1, and set E = Z2[x]/(x3 + x + 1). Prove that f(x) splits in E. That is, find
three distinct roots of f(x) in E.

Since f(x) has no roots in Z2, and is of degree 3, it is irreducible. Hence we know already that
[x] is a root, i.e. [x]3 + [x] + [1] = [0]. A bit of trial and error (not too much, since there are only
eight ring elements) finds the other roots [x2] and [x2 + x]. We verify: f(x2) = x6 + x2 + 1, and
x6 = (x3)2 = (x+ 1)2 = x2 + 1. Hence f(x2) = 0. Also, f(x2 + x) = x6 + x5 + x4 + x3 + x2 + x+ 1.
We have x6 = x2 +1, x5 = x2 +x+1, x4 = x2 +x, x3 = x+1. Plugging all of these in, and summing
in Z2, gives f(x2 + x) = 0.

9. Find a field with eight elements, and give the addition and multiplication table.
We need some irreducible third-degree polynomial in Z2[x]. Fortunately there are two: p(x) =
x3 +x+ 1 and q(x) = x3 +x2 + 1. Hence we have our choice of Z2[x]/(p(x)) or Z2[x]/(q(x)). These
are isomorphic, because there is a unique field with pk elements, for every prime p and every k ∈ N.
Below is the answer with p(x).

+ 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
1 1 0 x+ 1 x x2 + 1 x2 x2 + x+ 1 x2 + x
x x x+ 1 0 1 x2 + x x2 + x+ 1 x2 x2 + 1

x+ 1 x+ 1 x 1 0 x2 + x+ 1 x2 + x x2 + 1 x2

x2 x2 x2 + 1 x2 + x x2 + x+ 1 0 1 x x+ 1
x2 + 1 x2 + 1 x2 x2 + x+ 1 x2 + x 1 0 x+ 1 x
x2 + x x2 + x x2 + x+ 1 x2 x2 + 1 x x+ 1 0 1

x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x2 x+ 1 x 1 0

× 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 0 0 0 0 0 0 0
1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1

x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x
x2 0 x2 x+ 1 x2 + x+ 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x
x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + x x2 x+ 1

10. Prove that:
(a) 2 cos 2π

5 = e2πi/5 + e−2πi/5 satisfies x2 + x− 1 = 0; and

(b) 2 cos 2π
7 = e2πi/7 + e−2πi/7 satisfies x3 + x2 − 2x− 1 = 0.

(a) We plug in, expand, and simplify to get e2πi/5 + e4πi/5 + e6πi/5 + e8πi/5 + e10πi/5. This is the
sum of the five complex fifth roots of unity, which is zero by symmetry.
(b) We plug in, expand, and simplify to get e2πi/7+e4πi/7+e6πi/7+e8πi/7+e10πi/7+e12πi/7+e14πi/7.
This is the sum of the seven complex seventh roots of unity, which is again zero.

11. Use Problem 10 to prove that the regular pentagon is constructible with straightedge and compass,
while the regular septagon (seven edges) is not.

First, the regular pentagon (resp. septagon) is constructible exactly when 2 cos 2π
5 (resp. 2 cos 2π

7 )
is, since this translates easily to the edge lengths. Polynomial x2+x−1 has no rational roots (by the
rational root test) and hence is irreducible over Q since it is of degree 2. Set E = Q[x]/(x2 +x−1).
We have [E : Q] = 2, since x2 + x− 1 is degree 2, and the desired 2 cos 2π

5 lies in E. Hence we may
construct the pentagon.

Polynomial x3 + x2 − 2x− 1 also has no rational roots, and also is irreducible over Q since it is of
degree 3. Since 3 is not a power of 2, no root of x3 + x2 − 2x− 1 is constructible, and in particular
the septagon is not constructible.


