MATH 521A: Abstract Algebra

Homework 9: Due Nov. 30

1. Find the equivalence classes, and rules for addition and multiplication, in $\mathbb{Q}[x] /\left(x^{2}-2\right)$.
2. Find the equivalence classes, and rules for addition and multiplication, in $\mathbb{Q}[x] /\left(x^{2}\right)$.
3. Find the equivalence classes, and rules for addition and multiplication, in $\mathbb{Q}[x] /\left(x^{2}+1\right)$.
4. For exercises 1-3, find all the units and zero divisors.
5. For exercises 1-3, find the inverse of [$3 x-2$] (in each respective ring).
6. Find a zero divisor in $\mathbb{Z}_{2}[x] /\left(x^{4}+x^{2}+1\right)$.
7. If $f(x) \in F[x]$ has degree n, prove that there is an extension field E of F so that $f(x)$ splits. That is, $f(x)=c_{0}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n}\right)$ for some (not necessarily distinct) $c_{i} \in E$. Prove that the degree of E over F is at most $n!$.
8. Let $f(x)=x^{3}+x+1$, and set $E=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$. Prove that $f(x)$ splits in E. That is, find three distinct roots of $f(x)$ in E.
9. Find a field with eight elements, and give the addition and multiplication table.
10. Prove that:
(a) $2 \cos \frac{2 \pi}{5}=e^{2 \pi i / 5}+e^{-2 \pi i / 5}$ satisfies $x^{2}+x-1=0$; and
(b) $2 \cos \frac{2 \pi}{7}=e^{2 \pi i / 7}+e^{-2 \pi i / 7}$ satisfies $x^{3}+x^{2}-2 x-1=0$.
11. Use Problem 10 to prove that the regular pentagon is constructible with straightedge and compass, while the regular septagon (seven edges) is not.
