
MATH 521A: Abstract Algebra
Homework 1 Solutions

1. Set S = {−1} ∪ N0 = {−1, 0, 1, 2, 3, . . .}. Prove that S is well-ordered.

We prove that the usual order < on S is a well-order. Let T ⊆ S. If −1 /∈ T , then
T ⊆ N0, and hence T has a minimal element since N0 is a well-order. If instead −1 ∈ T ,
then −1 is a minimal element of T , since −1 < n for all n ∈ T ⊆ N0.

2. Suppose that S = {s1, s2, . . . , sk} is a finite set. Prove that S is well-ordered.

We define the “order of indices” as si ≺ sj if i < j. For T ⊆ S, the indices of T
fall into {1, 2, . . . , k} ⊆ N. Since N is well-ordered, there is some minimal index, and
hence some minimal element of T under ≺. Note: this same method proves that every
countable set is well-ordered.

3. Suppose that S and T are both well-ordered, and that S∩T = ∅ (i.e. S, T are disjoint).
Prove that S ∪ T is well-ordered.

We define a total order ≺, as follows. Let a, b ∈ S∪T . If a, b ∈ S, then a ≺ b if a <S b,
i.e. we keep the order in S, for elements from S. Similarly, if a, b ∈ T , then a ≺ b if
a <T b. However, if a ∈ S and b ∈ T , we say that a ≺ b; that is, every element of
S is less than every element of T . Now, let R ⊆ (S ∪ T ). Set R′ = R ∩ S. If R′ is
empty, then R ⊆ T . Hence, R has a minimal element in ≺ (since T is well-ordered by
<T , which coincides with ≺ on R). If instead R′ is nonempty, then R′ has a minimal
element in ≺ (since R′ ⊆ S, and S is well-ordered by <S, which coincides with ≺ on
R′), and this is the minimal element for all of R, since all other elements of R are in
S, and hence larger in ≺.

4. Use the division algorithm to prove that every integer is either even or odd.

Let n ∈ Z, and we apply the division algorithm with n, 2 to get q, r ∈ Z with n = 2q+r,
where 0 ≤ r < 2. If r = 0, then n is even. If r = 1, then n is odd. There are no other
options for r.

5. Use the division algorithm to prove that the square of any integer a is of the form 5k,
of the form 5k + 1, or of the form 5k + 4, for some integer k.

We apply the division algorithm with a, 5 to get q, r ∈ Z with a = 5q+r and 0 ≤ r < 5.
We now have a2 = (5q + r)2 = 25q2 + 10qr + r2 = 5s + r2, where s = 5q2 + 2qr ∈ Z.
If r = 0, 1, 2 then r2 = 0, 1, 4 and we are done. If instead r = 3, then r2 = 9 so
a2 = 5s+9 = 5(s+1)+4. Finally, if r = 4, then r2 = 16 so a2 = 5s+16 = 5(s+3)+1.

6. Prove the following variant of the division algorithm: Let a, b be integers with b > 0.
Then there exist integers q, r such that a = bq + r with 0 < r ≤ b.

We closely mimic the proof in the textbook, with a few subtle changes. Define S to be
the set of all integers a − bx, where x ∈ Z and a − bx > 0. Step 1: We prove S 6= ∅.
We take x = −|a| − 1, and calculate a− bx = a+ b|a|+ b ≥ b > 0. (using a+ b|a| ≥ 0)
Hence a − bx ∈ S. Step 2: Let r be minimal in S, since N0 is well-ordered. Since



r ∈ S, r > 0. Set q ∈ Z such that r = a− bq. Step 3: We prove that r ≤ b. We argue
by contradiction; if instead r > b, then r− b = a− b(q + 1) would be a smaller element
of S, which is impossible. Step 4: Uniqueness was not asked for in this problem.

7. Suppose that a, b, c are integers, with a|b and b|c. Prove that a|c.

Since a|b, there is some m ∈ Z with b = ma. Since b|c, there is some n ∈ Z with
c = bn. Combining, we get c = bn = (ma)n = (mn)a, so a|c.

8. Determine gcd(n, n + 2) for all integers n.

Note that gcd(n, n + 2) = gcd(n, n + 2 − n) = gcd(n, 2). But this last is confined to
the positive divisors of 2, which are just 1, 2. If n is even, then n + 2 is also even, so
gcd(n, n + 2) = 2. If instead n is odd, then 2 is not a divisor of n, so gcd(n, n + 2)
must be 1.

Let a, b ∈ Z with b 6= 0. Set CD(a, b) = {c ∈ Z : c|a and c|b}, the set of common
divisors. Set PLC(a, b) = {e ∈ N : ∃m,n ∈ Z, e = am + bn}, the set of positive linear
combinations.

9. Prove that gcd(a, b) is the largest element in CD(a, b), and that each element of
CD(a, b) divides gcd(a, b).

The first statement is the definition of greatest common divisor. Set d = gcd(a, b), for
convenience. Suppose now that c ∈ CD(a, b). There must be x, y ∈ Z with a = cx and
b = cy. By Theorem 1.2, there are integers u, v with d = au+ bv. Substituting, we get
d = (cx)u + (cy)v = c(xu + yv). Since xu + yv ∈ Z, in fact c|d.

10. Prove that gcd(a, b) is the smallest element in PLC(a, b), and that gcd(a, b) divides
each element of PLC(a, b).

The first statement is Theorem 1.2. Set d = gcd(a, b), for convenience. Suppose
now that e ∈ PLC(a, b), with d - e. We apply the division algorithm to e, d to get
q, r ∈ Z with e = qd + r and 0 ≤ r < d. Since d - e, in fact 0 < r < d. Now, since
d, e ∈ PLC(a, b), there are m,m′, n, n′ with d = am + bn and e = am′ + bn′. Multiply
the first equation by q to get qd = aqm + bqn. Subtracting, we have r = e − qd =
(am′ + bn′) − (aqm + bqn) = a(m′ − qm) + b(n′ − qn). Hence in fact r ∈ PLC(a, b),
and r < d, which contradicts Theorem 1.2.


