MATH 521A: Abstract Algebra

Homework 1 Solutions

1. Set $S=\{-1\} \cup \mathbb{N}_{0}=\{-1,0,1,2,3, \ldots\}$. Prove that S is well-ordered.

We prove that the usual order $<$ on S is a well-order. Let $T \subseteq S$. If $-1 \notin T$, then $T \subseteq \mathbb{N}_{0}$, and hence T has a minimal element since \mathbb{N}_{0} is a well-order. If instead $-1 \in T$, then -1 is a minimal element of T, since $-1<n$ for all $n \in T \subseteq \mathbb{N}_{0}$.
2. Suppose that $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ is a finite set. Prove that S is well-ordered.

We define the "order of indices" as $s_{i} \prec s_{j}$ if $i<j$. For $T \subseteq S$, the indices of T fall into $\{1,2, \ldots, k\} \subseteq \mathbb{N}$. Since \mathbb{N} is well-ordered, there is some minimal index, and hence some minimal element of T under \prec. Note: this same method proves that every countable set is well-ordered.
3. Suppose that S and T are both well-ordered, and that $S \cap T=\emptyset$ (i.e. S, T are disjoint). Prove that $S \cup T$ is well-ordered.
We define a total order \prec, as follows. Let $a, b \in S \cup T$. If $a, b \in S$, then $a \prec b$ if $a<_{S} b$, i.e. we keep the order in S, for elements from S. Similarly, if $a, b \in T$, then $a \prec b$ if $a<_{T} b$. However, if $a \in S$ and $b \in T$, we say that $a \prec b$; that is, every element of S is less than every element of T. Now, let $R \subseteq(S \cup T)$. Set $R^{\prime}=R \cap S$. If R^{\prime} is empty, then $R \subseteq T$. Hence, R has a minimal element in \prec (since T is well-ordered by $<_{T}$, which coincides with \prec on R). If instead R^{\prime} is nonempty, then R^{\prime} has a minimal element in \prec (since $R^{\prime} \subseteq S$, and S is well-ordered by $<_{S}$, which coincides with \prec on R^{\prime}), and this is the minimal element for all of R, since all other elements of R are in S, and hence larger in \prec.
4. Use the division algorithm to prove that every integer is either even or odd.

Let $n \in \mathbb{Z}$, and we apply the division algorithm with $n, 2$ to get $q, r \in \mathbb{Z}$ with $n=2 q+r$, where $0 \leq r<2$. If $r=0$, then n is even. If $r=1$, then n is odd. There are no other options for r.
5. Use the division algorithm to prove that the square of any integer a is of the form $5 k$, of the form $5 k+1$, or of the form $5 k+4$, for some integer k.
We apply the division algorithm with $a, 5$ to get $q, r \in \mathbb{Z}$ with $a=5 q+r$ and $0 \leq r<5$. We now have $a^{2}=(5 q+r)^{2}=25 q^{2}+10 q r+r^{2}=5 s+r^{2}$, where $s=5 q^{2}+2 q r \in \mathbb{Z}$. If $r=0,1,2$ then $r^{2}=0,1,4$ and we are done. If instead $r=3$, then $r^{2}=9$ so $a^{2}=5 s+9=5(s+1)+4$. Finally, if $r=4$, then $r^{2}=16$ so $a^{2}=5 s+16=5(s+3)+1$.
6. Prove the following variant of the division algorithm: Let a, b be integers with $b>0$. Then there exist integers q, r such that $a=b q+r$ with $0<r \leq b$.

We closely mimic the proof in the textbook, with a few subtle changes. Define S to be the set of all integers $a-b x$, where $x \in \mathbb{Z}$ and $a-b x>0$. Step 1: We prove $S \neq \emptyset$. We take $x=-|a|-1$, and calculate $a-b x=a+b|a|+b \geq b>0$. (using $a+b|a| \geq 0)$ Hence $a-b x \in S$. Step 2: Let r be minimal in S, since \mathbb{N}_{0} is well-ordered. Since
$r \in S, r>0$. Set $q \in \mathbb{Z}$ such that $r=a-b q$. Step 3: We prove that $r \leq b$. We argue by contradiction; if instead $r>b$, then $r-b=a-b(q+1)$ would be a smaller element of S, which is impossible. Step 4: Uniqueness was not asked for in this problem.
7. Suppose that a, b, c are integers, with $a \mid b$ and $b \mid c$. Prove that $a \mid c$.

Since $a \mid b$, there is some $m \in \mathbb{Z}$ with $b=m a$. Since $b \mid c$, there is some $n \in \mathbb{Z}$ with $c=b n$. Combining, we get $c=b n=(m a) n=(m n) a$, so $a \mid c$.
8. Determine $\operatorname{gcd}(n, n+2)$ for all integers n.

Note that $\operatorname{gcd}(n, n+2)=\operatorname{gcd}(n, n+2-n)=\operatorname{gcd}(n, 2)$. But this last is confined to the positive divisors of 2 , which are just 1,2 . If n is even, then $n+2$ is also even, so $\operatorname{gcd}(n, n+2)=2$. If instead n is odd, then 2 is not a divisor of n, so $\operatorname{gcd}(n, n+2)$ must be 1 .
Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Set $C D(a, b)=\{c \in \mathbb{Z}: c \mid a$ and $c \mid b\}$, the set of common divisors. Set $P L C(a, b)=\{e \in \mathbb{N}: \exists m, n \in \mathbb{Z}, e=a m+b n\}$, the set of positive linear combinations.
9. Prove that $\operatorname{gcd}(a, b)$ is the largest element in $C D(a, b)$, and that each element of $C D(a, b)$ divides $\operatorname{gcd}(a, b)$.

The first statement is the definition of greatest common divisor. Set $d=\operatorname{gcd}(a, b)$, for convenience. Suppose now that $c \in C D(a, b)$. There must be $x, y \in \mathbb{Z}$ with $a=c x$ and $b=c y$. By Theorem 1.2, there are integers u, v with $d=a u+b v$. Substituting, we get $d=(c x) u+(c y) v=c(x u+y v)$. Since $x u+y v \in \mathbb{Z}$, in fact $c \mid d$.
10. Prove that $\operatorname{gcd}(a, b)$ is the smallest element in $P L C(a, b)$, and that $\operatorname{gcd}(a, b)$ divides each element of $P L C(a, b)$.
The first statement is Theorem 1.2. Set $d=\operatorname{gcd}(a, b)$, for convenience. Suppose now that $e \in P L C(a, b)$, with $d \nmid e$. We apply the division algorithm to e, d to get $q, r \in \mathbb{Z}$ with $e=q d+r$ and $0 \leq r<d$. Since $d \nmid e$, in fact $0<r<d$. Now, since $d, e \in P L C(a, b)$, there are $m, m^{\prime}, n, n^{\prime}$ with $d=a m+b n$ and $e=a m^{\prime}+b n^{\prime}$. Multiply the first equation by q to get $q d=a q m+b q n$. Subtracting, we have $r=e-q d=$ $\left(a m^{\prime}+b n^{\prime}\right)-(a q m+b q n)=a\left(m^{\prime}-q m\right)+b\left(n^{\prime}-q n\right)$. Hence in fact $r \in P L C(a, b)$, and $r<d$, which contradicts Theorem 1.2.

