MATH 521A: Abstract Algebra

Homework 10 Solutions

1. Prove that $T=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R}. Note that \mathbb{Q} is a subfield of T.

We first note that $0=0+0 \sqrt{2} \in T$. Second, we calculate $(a+b \sqrt{2})-\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=$ $\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \sqrt{2} \in T$, so T is closed under subtraction. Lastly, we calculate $(a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=\left(a a^{\prime}+2 b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{2} \in T$, so T is closed under multiplication. Hence T is a subring of \mathbb{R}. Lastly, if $a+b \sqrt{2}$ is nonzero, then neither is $a-b \sqrt{2}$, and so neither is their product $a^{2}-2 b^{2}$. We calculate $(a+b \sqrt{2})\left(\frac{a}{a^{2}-2 b^{2}}+\frac{-b}{a^{2}-2 b^{2}} \sqrt{2}\right)=$ $\frac{a^{2}-2 b^{2}}{a^{2}-2 b^{2}}+\frac{0}{a^{2}-2 b^{2}} \sqrt{2}=1$. Hence T is a field.
2. Let F, G be rings such that \mathbb{Q} is a subring of each. Suppose $f: F \rightarrow G$ is a (ring) isomorphism. Prove that, for every $a \in \mathbb{Q}$, in fact $f(a)=a$.
First, we recall from Thm 3.10 (or prove from scratch) that $f(0)=0$ and $f(1)=1$. Second, for $n \in \mathbb{N}$, we have $f(n)=f(1+1+\cdots+1)=f(1)+f(1)+\cdots+f(1)=$ $1+1+\cdots+1=n$. Third, for $m, n \in \mathbb{N}$, we have $n=f(n)=f\left(\frac{n}{m}+\frac{n}{m}+\cdots+\frac{n}{m}\right)=$ $f\left(\frac{n}{m}\right)+f\left(\frac{n}{m}\right)+\cdots+f\left(\frac{n}{m}\right)=m f\left(\frac{n}{m}\right)$. Dividing both sides by m, we get $\frac{n}{m}=f\left(\frac{n}{m}\right)$. Lastly, for $m, n \in \mathbb{N}$, we have $0=f(0)=f\left(\frac{n}{m}+\frac{-n}{m}\right)=f\left(\frac{n}{m}\right)+f\left(\frac{-n}{m}\right)=\frac{n}{m}+f\left(\frac{-n}{m}\right)$, so $-\frac{n}{m}=f\left(\frac{-n}{m}\right)$.
3. Prove that $R=\mathbb{Q}[x] /\left(x^{2}-2\right)$ is not isomorphic to $S=\mathbb{Q}[x] /\left(x^{2}-3\right)$. Hint: problem 2.

We argue by contradiction; suppose $f: R \rightarrow S$ were an isomorphism. Both fields have \mathbb{Q} as subrings, so we may apply problem 2 to conclude that $f\left([2]_{R}\right)=[2]_{S}$. We now calculate $0_{S}=0_{R}=f\left(\left[x^{2}-2\right]_{R}\right)=f\left([x]_{R}^{2}-[2]_{R}\right)=f\left([x]_{R}\right)^{2}-f\left([2]_{R}\right)=f\left([x]_{R}\right)^{2}-[2]_{S}$, and hence $f\left([x]_{R}\right)^{2}=[2]_{S}$. Now, $f\left([x]_{R}\right)=[a x+b]_{S}$, so $[2]_{S}=\left[(a x+b)^{2}\right]_{S}=$ $\left[a^{2} x^{2}+2 a b x+b^{2}\right]_{S}=\left[2 a b x+\left(3 a^{2}+b^{2}\right)\right]_{S}$. Hence we have some $a, b \in \mathbb{Q}$ satisfying $2 a b=0$ and $3 a^{2}+b^{2}=2$. The first equation means that $a=0$ (which leads to $b= \pm \sqrt{2} \notin \mathbb{Q}$), or $b=0$ (which leads to $a= \pm \sqrt{2 / 3} \notin \mathbb{Q}$). Hence we have a contradiction.
4. Prove that $R=\mathbb{Q}[x] /\left(x^{2}-2\right)$ is isomorphic to $S=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$.

The natural isomorphism to try is $f:[b x+a]_{R} \mapsto a+b \sqrt{2}$. There are four things to check. We calculate $f\left([b x+a]+\left[b^{\prime} x+a^{\prime}\right]\right)=f\left(\left[\left(b+b^{\prime}\right) x+\left(a+a^{\prime}\right)\right]\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{2}=$ $(a+b \sqrt{2})+\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=f([b x+a])+f\left(\left[b^{\prime} x+a^{\prime}\right]\right)$. The slightly tricky one is $f\left([b x+a]\left[b^{\prime} x+a^{\prime}\right]\right)=f\left(\left[b b^{\prime} x^{2}+\left(b a^{\prime}+a b^{\prime}\right) x+a a^{\prime}\right]\right)=f\left(\left[\left(b a^{\prime}+a b^{\prime}\right) x+\left(2 b b^{\prime}+a a^{\prime}\right)\right]\right)=$ $\left(2 b b^{\prime}+a a^{\prime}\right)+\left(b a^{\prime}+a b^{\prime}\right) \sqrt{2}=(a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=f([b x+a]) f\left(\left[b^{\prime} x+a^{\prime}\right]\right)$. Suppose that $f([b x+a])=f\left(\left[b^{\prime} x+a^{\prime}\right]\right)$. Then $a+b \sqrt{2}=a^{\prime}+b^{\prime} \sqrt{2}$, so $a=a^{\prime}, b=b^{\prime}$ and $[b x+a]=\left[b^{\prime} x+a^{\prime}\right]$. This proves injectivity. Lastly, let $a+b \sqrt{2} \in S$. We have $f([b x+a])=a+b \sqrt{2}$. This proves surjectivity.
5. Set $F=\mathbb{Z}_{3}[x] /\left(x^{3}-x+1\right)$. Prove that $f(x)=x^{3}-x+1$ splits in F. That is, find three distinct roots of $f(x)$ in F.
The easiest root is $[x]$; we have $f([x])=\left[x^{3}-x+1\right]=[0]$ in F. To find the others takes
a bit of trial and error. We have $f([x+1])=\left[(x+1)^{3}-(x+1)+1\right]=\left[x^{3}+3 x^{2}+2 x+1\right]=$ $\left[x^{3}-x+1\right]=[0]$ in F. Lastly, we have $f([x-1])=\left[(x-1)^{3}-(x-1)+1\right]=$ $\left[x^{3}-3 x^{2}+2 x+1\right]=\left[x^{3}-x+1\right]=[0]$ in F.
6. Prove that $\{1, \sqrt{2}, i, i \sqrt{2}\}$ is linearly independent over \mathbb{Q}.

Suppose we have $0=a 1+b \sqrt{2}+c i+d i \sqrt{2}$, for some $a, b, c, d \in \mathbb{Q}$. First, we consider the real and imaginary parts separately; this tells us that $0=a 1+b \sqrt{2}$ and $0=c i+d i \sqrt{2}$. Dividing the latter by i, we get $0=c 1+d \sqrt{2}$. Now, if b is nonzero, we have $\sqrt{2}=\frac{-a}{b}$, a contradiction since $\sqrt{2} \notin \mathbb{Q}$. Hence $b=0$ and hence $a=0$. Similarly, $c=d=0$.
7. Set $R=\mathbb{Q}(\sqrt{2})$, and $S=R(i)$. Determine $[R: \mathbb{Q}],[S: R]$, and $[S: \mathbb{Q}]$.

The minimal polynomial for $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$; this is irreducible by Eisenstein $(p=2)$. Hence $[R: \mathbb{Q}]=2$. Now, $i \in S$ but $i \notin R$, so $[S: R] \geq 2$. A polynomial whose root is i, over R (and over \mathbb{Q}) is $x^{2}+1$. If this were reducible, then $[S: R]<2$, which we know isn't true, so this is irreducible. Hence $[S: \mathbb{Q}]=[S: R][R: \mathbb{Q}]=2 \cdot 2=4$.
8. Prove that $x^{4}-2 x^{2}+9$ is the minimal polynomial for $i+\sqrt{2}$ over \mathbb{Q}. (remember to prove irreducibility)
First, we evaluate $(i+\sqrt{2})^{4}-2(i+\sqrt{2})^{2}+9=0$, so $i+\sqrt{2}$ is a root. Since the polynomial has real coefficients, the conjugate, $i-\sqrt{2}$, is also a root. Since the polynomial is even, the negatives of these are also roots. Hence, over \mathbb{C}, the polynomial factors as $(x-i-\sqrt{2})(x-i+\sqrt{2})(x+i-\sqrt{2})(x+i+\sqrt{2})$. None of these four linear factors are in $\mathbb{Q}[x]$, but it's possible it has two quadratic factors. If so, the linear factors would break into two pairs. However, $(x-i-\sqrt{2})(x+i+\sqrt{2})=x^{2}-2 i \sqrt{2}-1 \notin \mathbb{Q}[x]$, and $(x-i-\sqrt{2})(x-i+\sqrt{2})=x^{2}-2 i x-3 \notin \mathbb{Q}[x]$, and $(x-i-\sqrt{2})(x+i-\sqrt{2})=$ $x^{2}-2 \sqrt{2} x+3 \notin \mathbb{Q}[x]$. Hence the polynomial is irreducible over \mathbb{Q}. Since it is monic, it is the minimal polynomial for all four of these roots.
9. Set $T=\mathbb{Q}(i+\sqrt{2})$, and let R, S be as in problem 7. Prove that $1, \sqrt{2}, i, i \sqrt{2}$ are all in T, so $S \subseteq T$.
First, $1 \in T$ since $\mathbb{Q} \in T$. Second, $(i+\sqrt{2})^{2}=1+2 i \sqrt{2} \in T$, so $2 i \sqrt{2} \in T$ (since $1 \in T$) and hence $i \sqrt{2} \in T$ (since $2 \in T$). Now, $(i+\sqrt{2})(i \sqrt{2})=2 i-\sqrt{2} \in T$. Hence $(i+\sqrt{2})+(2 i-\sqrt{2})=3 i \in T$, and hence $i \in T$ (since $3 \in T$). Lastly, $(i+\sqrt{2})-i=\sqrt{2} \in T$. Since each basis element of S is in T, all of S is in T.
10. Let R, S, T be as in problems 7 and 9 . Determine $[T: \mathbb{Q}]$, and hence $[T: S]$. What can we conclude about S, T ?

We have $[T: \mathbb{Q}]=4$, since the minimal polynomial is of degree 4. But also $[T: \mathbb{Q}]=$ $[T: S][S: \mathbb{Q}]=[T: S] 4$. Hence $[T: S]=1$, and in fact $S=T$.

