
MATH 521A: Abstract Algebra
Homework 10 Solutions

1. Prove that T = {a + b
√

2 : a, b ∈ Q} is a subfield of R. Note that Q is a subfield of T .

We first note that 0 = 0 + 0
√

2 ∈ T . Second, we calculate (a + b
√

2) − (a′ + b′
√

2) =
(a − a′) + (b − b′)

√
2 ∈ T , so T is closed under subtraction. Lastly, we calculate

(a+b
√

2)(a′+b′
√

2) = (aa′+2bb′)+(ab′+ba′)
√

2 ∈ T , so T is closed under multiplication.
Hence T is a subring of R. Lastly, if a + b

√
2 is nonzero, then neither is a− b

√
2, and

so neither is their product a2 − 2b2. We calculate (a + b
√

2)( a
a2−2b2 + −b

a2−2b2
√

2) =
a2−2b2
a2−2b2 + 0

a2−2b2
√

2 = 1. Hence T is a field.

2. Let F,G be rings such that Q is a subring of each. Suppose f : F → G is a (ring)
isomorphism. Prove that, for every a ∈ Q, in fact f(a) = a.

First, we recall from Thm 3.10 (or prove from scratch) that f(0) = 0 and f(1) = 1.
Second, for n ∈ N, we have f(n) = f(1 + 1 + · · · + 1) = f(1) + f(1) + · · · + f(1) =
1 + 1 + · · · + 1 = n. Third, for m,n ∈ N, we have n = f(n) = f( n

m
+ n

m
+ · · · + n

m
) =

f( n
m

) + f( n
m

) + · · · + f( n
m

) = mf( n
m

). Dividing both sides by m, we get n
m

= f( n
m

).
Lastly, for m,n ∈ N, we have 0 = f(0) = f( n

m
+ −n

m
) = f( n

m
) + f(−n

m
) = n

m
+ f(−n

m
), so

− n
m

= f(−n
m

).

3. Prove that R = Q[x]/(x2 − 2) is not isomorphic to S = Q[x]/(x2 − 3). Hint: problem
2.
We argue by contradiction; suppose f : R→ S were an isomorphism. Both fields have
Q as subrings, so we may apply problem 2 to conclude that f([2]R) = [2]S. We now
calculate 0S = 0R = f([x2−2]R) = f([x]2R− [2]R) = f([x]R)2−f([2]R) = f([x]R)2− [2]S,
and hence f([x]R)2 = [2]S. Now, f([x]R) = [ax + b]S, so [2]S = [(ax + b)2]S =
[a2x2 + 2abx + b2]S = [2abx + (3a2 + b2)]S. Hence we have some a, b ∈ Q satisfy-
ing 2ab = 0 and 3a2 + b2 = 2. The first equation means that a = 0 (which leads
to b = ±

√
2 /∈ Q), or b = 0 (which leads to a = ±

√
2/3 /∈ Q). Hence we have a

contradiction.

4. Prove that R = Q[x]/(x2 − 2) is isomorphic to S = {a + b
√

2 : a, b ∈ Q}.
The natural isomorphism to try is f : [bx + a]R 7→ a + b

√
2. There are four things to

check. We calculate f([bx+a]+[b′x+a′]) = f([(b+b′)x+(a+a′)]) = (a+a′)+(b+b′)
√

2 =
(a + b

√
2) + (a′ + b′

√
2) = f([bx + a]) + f([b′x + a′]). The slightly tricky one is

f([bx + a][b′x + a′]) = f([bb′x2 + (ba′ + ab′)x + aa′]) = f([(ba′ + ab′)x + (2bb′ + aa′)]) =
(2bb′ + aa′) + (ba′ + ab′)

√
2 = (a + b

√
2)(a′ + b′

√
2) = f([bx + a])f([b′x + a′]). Sup-

pose that f([bx + a]) = f([b′x + a′]). Then a + b
√

2 = a′ + b′
√

2, so a = a′, b = b′

and [bx + a] = [b′x + a′]. This proves injectivity. Lastly, let a + b
√

2 ∈ S. We have
f([bx + a]) = a + b

√
2. This proves surjectivity.

5. Set F = Z3[x]/(x3 − x + 1). Prove that f(x) = x3 − x + 1 splits in F . That is, find
three distinct roots of f(x) in F .

The easiest root is [x]; we have f([x]) = [x3−x+1] = [0] in F . To find the others takes



a bit of trial and error. We have f([x+1]) = [(x+1)3−(x+1)+1] = [x3+3x2+2x+1] =
[x3 − x + 1] = [0] in F . Lastly, we have f([x − 1]) = [(x − 1)3 − (x − 1) + 1] =
[x3 − 3x2 + 2x + 1] = [x3 − x + 1] = [0] in F .

6. Prove that {1,
√

2, i, i
√

2} is linearly independent over Q.

Suppose we have 0 = a1+b
√

2+ci+di
√

2, for some a, b, c, d ∈ Q. First, we consider the
real and imaginary parts separately; this tells us that 0 = a1 + b

√
2 and 0 = ci+di

√
2.

Dividing the latter by i, we get 0 = c1 + d
√

2. Now, if b is nonzero, we have
√

2 = −a
b

,

a contradiction since
√

2 /∈ Q. Hence b = 0 and hence a = 0. Similarly, c = d = 0.

7. Set R = Q(
√

2), and S = R(i). Determine [R : Q], [S : R], and [S : Q].

The minimal polynomial for
√

2 over Q is x2−2; this is irreducible by Eisenstein (p = 2).
Hence [R : Q] = 2. Now, i ∈ S but i /∈ R, so [S : R] ≥ 2. A polynomial whose root
is i, over R (and over Q) is x2 + 1. If this were reducible, then [S : R] < 2, which we
know isn’t true, so this is irreducible. Hence [S : Q] = [S : R][R : Q] = 2 · 2 = 4.

8. Prove that x4 − 2x2 + 9 is the minimal polynomial for i +
√

2 over Q. (remember to
prove irreducibility)

First, we evaluate (i +
√

2)4 − 2(i +
√

2)2 + 9 = 0, so i +
√

2 is a root. Since the poly-
nomial has real coefficients, the conjugate, i−

√
2, is also a root. Since the polynomial

is even, the negatives of these are also roots. Hence, over C, the polynomial factors as
(x− i−

√
2)(x− i+

√
2)(x+ i−

√
2)(x+ i+

√
2). None of these four linear factors are

in Q[x], but it’s possible it has two quadratic factors. If so, the linear factors would
break into two pairs. However, (x − i −

√
2)(x + i +

√
2) = x2 − 2i

√
2 − 1 /∈ Q[x],

and (x− i−
√

2)(x− i +
√

2) = x2 − 2ix− 3 /∈ Q[x], and (x− i−
√

2)(x + i−
√

2) =
x2 − 2

√
2x + 3 /∈ Q[x]. Hence the polynomial is irreducible over Q. Since it is monic,

it is the minimal polynomial for all four of these roots.

9. Set T = Q(i +
√

2), and let R, S be as in problem 7. Prove that 1,
√

2, i, i
√

2 are all in
T , so S ⊆ T .

First, 1 ∈ T since Q ∈ T . Second, (i +
√

2)2 = 1 + 2i
√

2 ∈ T , so 2i
√

2 ∈ T (since
1 ∈ T ) and hence i

√
2 ∈ T (since 2 ∈ T ). Now, (i +

√
2)(i
√

2) = 2i −
√

2 ∈ T .
Hence (i +

√
2) + (2i −

√
2) = 3i ∈ T , and hence i ∈ T (since 3 ∈ T ). Lastly,

(i +
√

2)− i =
√

2 ∈ T . Since each basis element of S is in T , all of S is in T .

10. Let R, S, T be as in problems 7 and 9. Determine [T : Q], and hence [T : S]. What
can we conclude about S, T?

We have [T : Q] = 4, since the minimal polynomial is of degree 4. But also [T : Q] =
[T : S][S : Q] = [T : S]4. Hence [T : S] = 1, and in fact S = T .


