MATH 521A: Abstract Algebra Homework 10: Due Dec. 6

- 1. Prove that $T = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} . Note that \mathbb{Q} is a subfield of T.
- 2. Let F, G be rings such that \mathbb{Q} is a subring of each. Suppose $f : F \to G$ is a (ring) isomorphism. Prove that, for every $a \in \mathbb{Q}$, in fact f(a) = a.
- 3. Prove that $R = \mathbb{Q}[x]/(x^2 2)$ is not isomorphic to $S = \mathbb{Q}[x]/(x^2 3)$. Hint: problem 2.
- 4. Prove that $R = \mathbb{Q}[x]/(x^2 2)$ is isomorphic to $S = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
- 5. Set $F = \mathbb{Z}_3[x]/(x^3 x + 1)$. Prove that $f(x) = x^3 x + 1$ splits in F. That is, find three distinct roots of f(x) in F.
- 6. Prove that $\{1, \sqrt{2}, i, i\sqrt{2}\}$ is linearly independent over \mathbb{Q} .
- 7. Set $R = \mathbb{Q}(\sqrt{2})$, and S = R(i). Determine $[R : \mathbb{Q}], [S : R]$, and $[S : \mathbb{Q}]$.
- 8. Prove that $x^4 2x^2 + 9$ is the minimal polynomial for $i + \sqrt{2}$ over \mathbb{Q} . (remember to prove irreducibility)
- 9. Set $T = \mathbb{Q}(i + \sqrt{2})$, and let R, S be as in problem 7. Prove that $1, \sqrt{2}, i, i\sqrt{2}$ are all in T, so $S \subseteq T$.
- 10. Let R, S, T be as in problems 7 and 9. Determine $[T : \mathbb{Q}]$, and hence [T : S]. What can we conclude about S, T?