MATH 521A: Abstract Algebra

Homework 10: Due Dec. 6

1. Prove that $T=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R}. Note that \mathbb{Q} is a subfield of T.
2. Let F, G be rings such that \mathbb{Q} is a subring of each. Suppose $f: F \rightarrow G$ is a (ring) isomorphism. Prove that, for every $a \in \mathbb{Q}$, in fact $f(a)=a$.
3. Prove that $R=\mathbb{Q}[x] /\left(x^{2}-2\right)$ is not isomorphic to $S=\mathbb{Q}[x] /\left(x^{2}-3\right)$. Hint: problem 2.
4. Prove that $R=\mathbb{Q}[x] /\left(x^{2}-2\right)$ is isomorphic to $S=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$.
5. Set $F=\mathbb{Z}_{3}[x] /\left(x^{3}-x+1\right)$. Prove that $f(x)=x^{3}-x+1$ splits in F. That is, find three distinct roots of $f(x)$ in F.
6. Prove that $\{1, \sqrt{2}, i, i \sqrt{2}\}$ is linearly independent over \mathbb{Q}.
7. Set $R=\mathbb{Q}(\sqrt{2})$, and $S=R(i)$. Determine $[R: \mathbb{Q}],[S: R]$, and $[S: \mathbb{Q}]$.
8. Prove that $x^{4}-2 x^{2}+9$ is the minimal polynomial for $i+\sqrt{2}$ over \mathbb{Q}. (remember to prove irreducibility)
9. Set $T=\mathbb{Q}(i+\sqrt{2})$, and let R, S be as in problem 7. Prove that $1, \sqrt{2}, i, i \sqrt{2}$ are all in T, so $S \subseteq T$.
10. Let R, S, T be as in problems 7 and 9 . Determine $[T: \mathbb{Q}]$, and hence $[T: S]$. What can we conclude about S, T ?
