MATH 521A: Abstract Algebra

Homework 11 Solutions

1. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I \cap J$ is an ideal of R.
First, since I, J are ideals, then $0 \in I$ and $0 \in J$. Hence $0 \in I \cap J$, so it is nonempty. Second, let $a, b \in I \cap J$. Then $a, b \in I$. Since I is an ideal, $a-b \in I$. Similarly, since $a, b \in J$, and J is an ideal, $a-b \in J$. Hence $a-b \in I \cap J$. Lastly, let $a \in I \cap J$ and $r \in R$. Since I, J are ideals, then $r a \in I$ and $r a \in J$. Combining, $r a \in I \cap J$.
2. Find I, J, ideals of \mathbb{Z}, such that $I \cup J$ is not be an ideal of \mathbb{Z}.

Many examples are possible; here is one. Set $I=(2), J=(3)$, principal ideals. We have $2 \in I \subseteq I \cup J$, and $3 \in J \subseteq I \cup J$. But their sum is $2+3=5 \notin I \cup J$, since $5 \notin I$ and $5 \notin J$. Hence $I \cup J$ is not closed under addition, and is therefore not an ideal.
3. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I+J=\{a+b$: $a \in I, b \in J\}$ is an ideal of R.
First, since I, J are ideals, then $0 \in I$ and $0 \in J$. Hence $0=0+0 \in I+J$, so it is nonempty. Second, let $x, x^{\prime} \in I+J$. Then, there are $a, a^{\prime} \in I, b, b^{\prime} \in J$ such that $x=a+b, x^{\prime}=a^{\prime}+b^{\prime}$. We have $x-x^{\prime}=(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)$. Since I is an ideal, $a-a^{\prime} \in I$. Since J is an ideal, $b-b^{\prime} \in J$. Hence $x-x^{\prime} \in I+J$. Lastly, let $x \in I+J$ and $r \in R$. There are $a \in I, b \in J$ with $x=a+b$. Since I, J are ideals, then $r a \in I$ and $r a \in J$. Hence $r x=r a+r b \in I+J$.
4. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I J=\left\{\sum_{i=1}^{k} a_{i} b_{i}\right.$: $\left.k \in \mathbb{N}, a_{i} \in I, b_{i} \in J\right\}$ is an ideal of R.
First, since I, J are ideals, then $0 \in I$ and $0 \in J$. Hence $0=0 \cdot 0 \in I J$, so it is nonempty. Next, let $\sum_{i=1}^{k} a_{i} b_{i}, \sum_{i=1}^{j} a_{i}^{\prime} b_{i}^{\prime} \in I J . ~ D e f i n e ~ a_{i}^{\prime \prime}=\left\{\begin{array}{ll}a_{i} & i \leq k \\ -a_{i-k}^{\prime} & k+1 \leq i \leq k+j\end{array}\right.$, and $b_{i}^{\prime \prime}=\left\{\begin{array}{ll}b_{i} & i \leq k \\ b_{i-k}^{\prime} & k+1 \leq i \leq k+j\end{array}\right.$ similarly. We have $a_{i}^{\prime \prime} \in I$ and $b_{i}^{\prime \prime} \in J$ by construction, and $\sum_{i=1}^{k} a_{i} b_{i}-\sum_{i=1}^{j} a_{i}^{\prime} b_{i}^{\prime}=\sum_{i=1}^{j+k} a_{i}^{\prime \prime} b_{i}^{\prime \prime} \in I J$. Lastly, for any $r \in R$, we have $r \sum_{i=1}^{k} a_{i} b_{i}=\sum_{i=1}^{k}\left(r a_{i}\right) b_{i} \in I J$, since each $r a_{i} \in I$.
5. Find I, J, ideals of $\mathbb{Z}[x]$, such that $K=\{a b: a \in I, b \in J\}$ is not an ideal of $\mathbb{Z}[x]$. Hint: Neither ideal can be principal.
Many examples are possible; here is one. Set $I=(2, x), J=(3, x)$. We have $3 x(=x \cdot 3) \in K$, and also $2 x(=2 \cdot x) \in K$. If K were an ideal, it would also contain $3 x-2 x=x$. Hence, there would be polynomials $r(x), s(x), u(x), v(x) \in \mathbb{Z}[x]$, such that $x=(2 r(x)+x s(x))(3 u(x)+x v(x))$. Since $\operatorname{deg}(x)=1$, then either $s(x)=0$ or $v(x)=0$ (otherwise the degree would be at least 2). If $s(x)=0$, then the RHS has content 2 , but x has content 1 , a contradiction. If $v(x)=0$, then the RHS has content 3 , but x has content 1 , again a contradiction.
6. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I J \subseteq I \cap J$. It suffices to prove that $a b \in I \cap J$, for all $a \in I, b \in J$; this is because $I \cap J$ is closed under addition. Now, $b \in J \subseteq R$; since I is an ideal, $a b \in I$. Also, $a \in I \subseteq R$; since J is an ideal, $a b \in J$. Thus $a b \in I \cap J$.
7. Let R be a commutative ring, and suppose that $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ is an infinite tower of ideals, each contained in the next. Set $I=\cup_{j=1}^{\infty} I_{j}$. Prove that I is an ideal.
First, since I_{1} is an ideal, $0 \in I_{1}$, so $0 \in I$. Hence I is nonempty. Next, suppose that $a, b \in I$. There must be some $j \geq 1$ such that $a \in I_{j}$. There must also be some $k \geq 1$ such that $b \in I_{k}$. Now, choose any $m \geq \max (j, k)$. We have $a \in I_{j} \subseteq I_{m}$, and $b \in I_{k} \subseteq I_{m}$. Since I_{m} is an ideal, it is closed under subtraction, so $a-b \in I_{m} \subseteq I$. Lastly, let $a \in I$ and $r \in R$. We must have some $k \geq 1$ with $a \in I_{k}$. Since I_{k} is an ideal, $r a \in I_{k} \subseteq I$.
8. Find all ideals in \mathbb{Z}_{8}, and then use the first isomorphism theorem to find all homomorphic images of \mathbb{Z}_{8}.
In \mathbb{Z}_{8}, note that $3+3+3=1,5+5+5+5+5=1,7+7+7+7+7+7+7=1$; hence if an ideal contains an odd number it must contain 1 , and thus all of \mathbb{Z}_{8}. If an ideal contains 2 , then it contains every even number, i.e. (2). Since $6+6+6=2$, if an ideal contains 6 , then it again is (2). The third possible ideal is $(4)=\{0,4\}$.
Now, if all of \mathbb{Z}_{8} is the kernel of an isomorphism, then the homomorphic image has a single element, i.e is the trivial ring $\{0\}$. If (2) is the kernel, there are two equivalence classes, so the homomorphic image has two elements, i.e. is the ring \mathbb{Z}_{2}. Lastly, if (4) is the kernel, the homomorphic image is \mathbb{Z}_{4}.
9. Prove that every ideal in \mathbb{Z} is principal.

Let I be an ideal. If $I=\{0\}$, then $I=(0)$, principal. Otherwise, I contains a nonzero element x, and hence (by considering $0-x$ if necessary) a positive element. Let y be the smallest positive element of I. Since $y \in I$, in fact $(y) \subseteq I$. Now, let $a \in I$. By the division algoithm, there are $q, r \in \mathbb{Z}$ with $a=y q+r$, and $0 \leq r<q$. Since $a, y \in I$, in fact $a-\underbrace{y+y+\cdots+y}_{q}=r \in I$. But y was the smallest positive element of I, so in fact $r=0$. Hence $y \mid a$ and so $a \in(y)$. Since $a \in I$ was arbitrary, this proves $I \subseteq(y)$. Combinining, $I=(y)$.
10. Use the first isomorphism theorem to find all homomorphic images of \mathbb{Z}.

By the previous problem, the ideals of \mathbb{Z} are just (n) for some $n \in \mathbb{Z}$. Hence these are the possible kernels of a homomorphism. For $n=0$, we have $\mathbb{Z} /(0) \cong \mathbb{Z}$. For all other n, since $\mathbb{Z} /(n) \cong \mathbb{Z}_{n}$, these are exactly the homomorphic images of \mathbb{Z}.

