
MATH 521A: Abstract Algebra
Homework 11 Solutions

1. Let R be a commutative ring, and let I, J be ideals of R. Prove that I ∩ J is an ideal
of R.
First, since I, J are ideals, then 0 ∈ I and 0 ∈ J . Hence 0 ∈ I ∩ J , so it is nonempty.
Second, let a, b ∈ I ∩ J . Then a, b ∈ I. Since I is an ideal, a− b ∈ I. Similarly, since
a, b ∈ J , and J is an ideal, a − b ∈ J . Hence a − b ∈ I ∩ J . Lastly, let a ∈ I ∩ J and
r ∈ R. Since I, J are ideals, then ra ∈ I and ra ∈ J . Combining, ra ∈ I ∩ J .

2. Find I, J , ideals of Z, such that I ∪ J is not be an ideal of Z.
Many examples are possible; here is one. Set I = (2), J = (3), principal ideals. We
have 2 ∈ I ⊆ I ∪ J , and 3 ∈ J ⊆ I ∪ J . But their sum is 2 + 3 = 5 /∈ I ∪ J , since 5 /∈ I
and 5 /∈ J . Hence I ∪ J is not closed under addition, and is therefore not an ideal.

3. Let R be a commutative ring, and let I, J be ideals of R. Prove that I + J = {a + b :
a ∈ I, b ∈ J} is an ideal of R.

First, since I, J are ideals, then 0 ∈ I and 0 ∈ J . Hence 0 = 0 + 0 ∈ I + J , so it
is nonempty. Second, let x, x′ ∈ I + J . Then, there are a, a′ ∈ I, b, b′ ∈ J such that
x = a + b, x′ = a′ + b′. We have x− x′ = (a + b)− (a′ + b′) = (a− a′) + (b− b′). Since
I is an ideal, a− a′ ∈ I. Since J is an ideal, b− b′ ∈ J . Hence x− x′ ∈ I + J . Lastly,
let x ∈ I + J and r ∈ R. There are a ∈ I, b ∈ J with x = a + b. Since I, J are ideals,
then ra ∈ I and ra ∈ J . Hence rx = ra + rb ∈ I + J .

4. Let R be a commutative ring, and let I, J be ideals of R. Prove that IJ = {
∑k

i=1 aibi :
k ∈ N, ai ∈ I, bi ∈ J} is an ideal of R.

First, since I, J are ideals, then 0 ∈ I and 0 ∈ J . Hence 0 = 0·0 ∈ IJ , so it is nonempty.

Next, let
∑k

i=1 aibi,
∑j

i=1 a
′
ib
′
i ∈ IJ . Define a′′i =

{
ai i ≤ k

−a′i−k k + 1 ≤ i ≤ k + j
, and

b′′i =

{
bi i ≤ k

b′i−k k + 1 ≤ i ≤ k + j
similarly. We have a′′i ∈ I and b′′i ∈ J by construc-

tion, and
∑k

i=1 aibi −
∑j

i=1 a
′
ib
′
i =

∑j+k
i=1 a

′′
i b
′′
i ∈ IJ . Lastly, for any r ∈ R, we have

r
∑k

i=1 aibi =
∑k

i=1(rai)bi ∈ IJ , since each rai ∈ I.

5. Find I, J , ideals of Z[x], such that K = {ab : a ∈ I, b ∈ J} is not an ideal of Z[x].
Hint: Neither ideal can be principal.

Many examples are possible; here is one. Set I = (2, x), J = (3, x). We have
3x(= x · 3) ∈ K, and also 2x(= 2 · x) ∈ K. If K were an ideal, it would also
contain 3x− 2x = x. Hence, there would be polynomials r(x), s(x), u(x), v(x) ∈ Z[x],
such that x = (2r(x) + xs(x))(3u(x) + xv(x)). Since deg(x) = 1, then either s(x) = 0
or v(x) = 0 (otherwise the degree would be at least 2). If s(x) = 0, then the RHS has
content 2, but x has content 1, a contradiction. If v(x) = 0, then the RHS has content
3, but x has content 1, again a contradiction.



6. Let R be a commutative ring, and let I, J be ideals of R. Prove that IJ ⊆ I ∩ J .
It suffices to prove that ab ∈ I ∩ J , for all a ∈ I, b ∈ J ; this is because I ∩ J is closed
under addition. Now, b ∈ J ⊆ R; since I is an ideal, ab ∈ I. Also, a ∈ I ⊆ R; since J
is an ideal, ab ∈ J . Thus ab ∈ I ∩ J .

7. Let R be a commutative ring, and suppose that I1 ⊆ I2 ⊆ I3 ⊆ · · · is an infinite tower
of ideals, each contained in the next. Set I = ∪∞j=1Ij. Prove that I is an ideal.

First, since I1 is an ideal, 0 ∈ I1, so 0 ∈ I. Hence I is nonempty. Next, suppose that
a, b ∈ I. There must be some j ≥ 1 such that a ∈ Ij. There must also be some
k ≥ 1 such that b ∈ Ik. Now, choose any m ≥ max(j, k). We have a ∈ Ij ⊆ Im, and
b ∈ Ik ⊆ Im. Since Im is an ideal, it is closed under subtraction, so a − b ∈ Im ⊆ I.
Lastly, let a ∈ I and r ∈ R. We must have some k ≥ 1 with a ∈ Ik. Since Ik is an
ideal, ra ∈ Ik ⊆ I.

8. Find all ideals in Z8, and then use the first isomorphism theorem to find all homomor-
phic images of Z8.

In Z8, note that 3 + 3 + 3 = 1, 5 + 5 + 5 + 5 + 5 = 1, 7 + 7 + 7 + 7 + 7 + 7 + 7 = 1;
hence if an ideal contains an odd number it must contain 1, and thus all of Z8. If an
ideal contains 2, then it contains every even number, i.e. (2). Since 6 + 6 + 6 = 2, if
an ideal contains 6, then it again is (2). The third possible ideal is (4) = {0, 4}.
Now, if all of Z8 is the kernel of an isomorphism, then the homomorphic image has a
single element, i.e is the trivial ring {0}. If (2) is the kernel, there are two equivalence
classes, so the homomorphic image has two elements, i.e. is the ring Z2. Lastly, if (4)
is the kernel, the homomorphic image is Z4.

9. Prove that every ideal in Z is principal.
Let I be an ideal. If I = {0}, then I = (0), principal. Otherwise, I contains a nonzero
element x, and hence (by considering 0− x if necessary) a positive element. Let y be
the smallest positive element of I. Since y ∈ I, in fact (y) ⊆ I. Now, let a ∈ I. By the
division algoithm, there are q, r ∈ Z with a = yq + r, and 0 ≤ r < q. Since a, y ∈ I, in
fact a − y + y + · · ·+ y︸ ︷︷ ︸

q

= r ∈ I. But y was the smallest positive element of I, so in

fact r = 0. Hence y|a and so a ∈ (y). Since a ∈ I was arbitrary, this proves I ⊆ (y).
Combinining, I = (y).

10. Use the first isomorphism theorem to find all homomorphic images of Z.

By the previous problem, the ideals of Z are just (n) for some n ∈ Z. Hence these are
the possible kernels of a homomorphism. For n = 0, we have Z/(0) ∼= Z. For all other
n, since Z/(n) ∼= Zn, these are exactly the homomorphic images of Z.


