MATH 521A: Abstract Algebra Homework 11 Solutions

1. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I \cap J$ is an ideal of R.

First, since I, J are ideals, then $0 \in I$ and $0 \in J$. Hence $0 \in I \cap J$, so it is nonempty. Second, let $a, b \in I \cap J$. Then $a, b \in I$. Since I is an ideal, $a - b \in I$. Similarly, since $a, b \in J$, and J is an ideal, $a - b \in J$. Hence $a - b \in I \cap J$. Lastly, let $a \in I \cap J$ and $r \in R$. Since I, J are ideals, then $ra \in I$ and $ra \in J$. Combining, $ra \in I \cap J$.

- 2. Find I, J, ideals of \mathbb{Z} , such that $I \cup J$ is not be an ideal of \mathbb{Z} . Many examples are possible; here is one. Set I = (2), J = (3), principal ideals. We have $2 \in I \subseteq I \cup J$, and $3 \in J \subseteq I \cup J$. But their sum is $2+3=5 \notin I \cup J$, since $5 \notin I$ and $5 \notin J$. Hence $I \cup J$ is not closed under addition, and is therefore not an ideal.
- 3. Let R be a commutative ring, and let I, J be ideals of R. Prove that $I + J = \{a + b : a \in I, b \in J\}$ is an ideal of R. First, since I, J are ideals, then $0 \in I$ and $0 \in J$. Hence $0 = 0 + 0 \in I + J$, so it is nonempty. Second, let $x, x' \in I + J$. Then, there are $a, a' \in I, b, b' \in J$ such that x = a + b, x' = a' + b'. We have x - x' = (a + b) - (a' + b') = (a - a') + (b - b'). Since I is an ideal, $a - a' \in I$. Since J is an ideal, $b - b' \in J$. Hence $x - x' \in I + J$. Lastly, let $x \in I + J$ and $r \in R$. There are $a \in I, b \in J$ with x = a + b. Since I, J are ideals, then $ra \in I$ and $ra \in J$. Hence $rx = ra + rb \in I + J$.
- 4. Let *R* be a commutative ring, and let *I*, *J* be ideals of *R*. Prove that $IJ = \{\sum_{i=1}^{k} a_i b_i : k \in \mathbb{N}, a_i \in I, b_i \in J\}$ is an ideal of *R*. First, since *I*, *J* are ideals, then $0 \in I$ and $0 \in J$. Hence $0 = 0 \cdot 0 \in IJ$, so it is nonempty.

Next, let $\sum_{i=1}^{k} a_i b_i, \sum_{i=1}^{j} a'_i b'_i \in IJ$. Define $a''_i = \begin{cases} a_i & i \le k \\ -a'_{i-k} & k+1 \le i \le k+j \end{cases}$, and

 $b_i'' = \begin{cases} b_i & i \le k \\ b_{i-k}' & k+1 \le i \le k+j \end{cases} \text{ similarly. We have } a_i'' \in I \text{ and } b_i'' \in J \text{ by construction, and } \sum_{i=1}^k a_i b_i - \sum_{i=1}^j a_i' b_i' = \sum_{i=1}^{j+k} a_i'' b_i'' \in IJ. \text{ Lastly, for any } r \in R, \text{ we have } r \sum_{i=1}^k a_i b_i = \sum_{i=1}^k (ra_i) b_i \in IJ, \text{ since each } ra_i \in I. \end{cases}$

5. Find I, J, ideals of $\mathbb{Z}[x]$, such that $K = \{ab : a \in I, b \in J\}$ is not an ideal of $\mathbb{Z}[x]$. Hint: Neither ideal can be principal.

Many examples are possible; here is one. Set I = (2, x), J = (3, x). We have $3x(=x \cdot 3) \in K$, and also $2x(=2 \cdot x) \in K$. If K were an ideal, it would also contain 3x - 2x = x. Hence, there would be polynomials $r(x), s(x), u(x), v(x) \in \mathbb{Z}[x]$, such that x = (2r(x) + xs(x))(3u(x) + xv(x)). Since $\deg(x) = 1$, then either s(x) = 0 or v(x) = 0 (otherwise the degree would be at least 2). If s(x) = 0, then the RHS has content 2, but x has content 1, a contradiction. If v(x) = 0, then the RHS has content 3, but x has content 1, again a contradiction.

- 6. Let R be a commutative ring, and let I, J be ideals of R. Prove that $IJ \subseteq I \cap J$. It suffices to prove that $ab \in I \cap J$, for all $a \in I, b \in J$; this is because $I \cap J$ is closed under addition. Now, $b \in J \subseteq R$; since I is an ideal, $ab \in I$. Also, $a \in I \subseteq R$; since J is an ideal, $ab \in J$. Thus $ab \in I \cap J$.
- 7. Let R be a commutative ring, and suppose that $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an infinite tower of ideals, each contained in the next. Set $I = \bigcup_{j=1}^{\infty} I_j$. Prove that I is an ideal. First, since I_1 is an ideal, $0 \in I_1$, so $0 \in I$. Hence I is nonempty. Next, suppose that $a, b \in I$. There must be some $j \geq 1$ such that $a \in I_j$. There must also be some $k \geq 1$ such that $b \in I_k$. Now, choose any $m \geq \max(j, k)$. We have $a \in I_j \subseteq I_m$, and $b \in I_k \subseteq I_m$. Since I_m is an ideal, it is closed under subtraction, so $a - b \in I_m \subseteq I$. Lastly, let $a \in I$ and $r \in R$. We must have some $k \geq 1$ with $a \in I_k$. Since I_k is an ideal, $ra \in I_k \subseteq I$.
- 8. Find all ideals in \mathbb{Z}_8 , and then use the first isomorphism theorem to find all homomorphic images of \mathbb{Z}_8 .

In \mathbb{Z}_8 , note that 3 + 3 + 3 = 1, 5 + 5 + 5 + 5 + 5 = 1, 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 = 1; hence if an ideal contains an odd number it must contain 1, and thus all of \mathbb{Z}_8 . If an ideal contains 2, then it contains every even number, i.e. (2). Since 6 + 6 + 6 = 2, if an ideal contains 6, then it again is (2). The third possible ideal is $(4) = \{0, 4\}$.

Now, if all of \mathbb{Z}_8 is the kernel of an isomorphism, then the homomorphic image has a single element, i.e is the trivial ring $\{0\}$. If (2) is the kernel, there are two equivalence classes, so the homomorphic image has two elements, i.e. is the ring \mathbb{Z}_2 . Lastly, if (4) is the kernel, the homomorphic image is \mathbb{Z}_4 .

9. Prove that every ideal in \mathbb{Z} is principal.

Let *I* be an ideal. If $I = \{0\}$, then I = (0), principal. Otherwise, *I* contains a nonzero element *x*, and hence (by considering 0 - x if necessary) a positive element. Let *y* be the smallest positive element of *I*. Since $y \in I$, in fact $(y) \subseteq I$. Now, let $a \in I$. By the division algorithm, there are $q, r \in \mathbb{Z}$ with a = yq + r, and $0 \le r < q$. Since $a, y \in I$, in fact $a - y + y + \cdots + y = r \in I$. But *y* was the smallest positive element of *I*, so in

fact r = 0. Hence y|a and so $a \in (y)$. Since $a \in I$ was arbitrary, this proves $I \subseteq (y)$. Combining, I = (y).

10. Use the first isomorphism theorem to find all homomorphic images of \mathbb{Z} .

By the previous problem, the ideals of \mathbb{Z} are just (n) for some $n \in \mathbb{Z}$. Hence these are the possible kernels of a homomorphism. For n = 0, we have $\mathbb{Z}/(0) \cong \mathbb{Z}$. For all other n, since $\mathbb{Z}/(n) \cong \mathbb{Z}_n$, these are exactly the homomorphic images of \mathbb{Z} .