MATH 521A: Abstract Algebra Homework 2 Solutions

1. Let $a, b \in \mathbb{N}$, and set $d = \gcd(a, b)$. Prove that $\gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

There must be $a', b' \in \mathbb{N}$ with a = da', b = db'. Suppose that gcd(a', b') = k > 1. Then k is a common divisor of a', b', and there are $a'', b'' \in \mathbb{N}$ with a' = ka'', b' = kb''. Substituting, we get a = (dk)a'', b = (dk)b''. Now dk > d is a common divisor of a, b, which contradicts the definition of gcd. Hence in fact k = 1.

2. Let $a, b, c \in \mathbb{Z}$. Consider the following equation (in variables x, y):

$$ax + by = c$$

Prove that this equation has integer solutions, if and only if gcd(a, b)|c.

Set $d = \gcd(a, b)$. First, if d|c, then there is some $k \in \mathbb{N}$ with c = dk. We apply Theorem 1.2 to get $u, v \in \mathbb{Z}$ with au+bv = d. Multiplying by k, we get a(uk)+b(vk) = dk = c. Taking x = uk, y = vk, we are done.

Suppose now that there are x, y satisfying the equation. If c = 0 then d|c. If c > 0 then c is in PLC(a, b) and hence d|c by the previous homework set. If instead c < 0 then we take x' = -x, y' = -y, and get ax' + by' = (-c), so -c is in PLC(a, b). By the previous homework set, d|(-c), and hence d|c.

3. Use the Generalized Euclidean Algorithm to find gcd(196, 308) and also to find integers x, y satisfying 196x + 308y = gcd(196, 308).

Step 1: $308 = 1 \cdot 196 + 112$ Step 2: $196 = 1 \cdot 112 + 84$ Step 3: $112 = 1 \cdot 84 + 28$ Step 4: $84 = 3 \cdot 28 + 0$. Hence we conclude that gcd(196, 308) = 28. Continuing, Step 5: $28 = 112 - 1 \cdot 84$ Step 6: $28 = 112 - 1 \cdot (196 - 1 \cdot 112) = 2 \cdot 112 - 1 \cdot 196$ Step 7: $28 = 2 \cdot (308 - 1 \cdot 196) - 1 \cdot 196 = 2 \cdot 308 - 3 \cdot 196$. Hence we take x = -3, y = 2.

4. Let $a, b \in \mathbb{N}$. Prove that the Euclidean Algorithm will find gcd(a, b) in at most min(a, b) steps.

Suppose a > b for convenience. By the Division Algorithm, the remainder must decrease at every step. Hence the first remainder must be at most b-1, the next at most b-2, etc. Once the remainder is zero the algorithm terminates; this can take at most b steps.

5. Find all primes between 1025 and 1075.

There are just eight: 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069.

6. Let $a, b, n \in \mathbb{N}$. Prove that a|b if and only if $a^n|b^n$.

One direction is easier: if a|b, then for some $c \in \mathbb{N}$, b = ca. Raising to the power n, we get $b^n = c^n a^n$, so $a^n | b^n$.

Suppose now that $a^n | b^n$. For this direction we need the Fundamental Theorem of Arithmetic. Let p_1, p_2, \ldots, p_k be the primes dividing either or both of a, b. We write

 $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$, for some $a_i, b_i \in \mathbb{N}_0$. Raising to the power n, we get $a^n = p_1^{na_1} p_2^{na_2} \cdots p_k^{na_k}$ and $b^n = p_1^{nb_1} p_2^{nb_2} \cdots p_k^{nb_k}$. Since $a^n | b^n$, we have $na_1 \leq nb_1$, $na_2 \leq nb_2, \ldots$, and $na_k \leq nb_k$. Dividing each inequality by n, we get $a_1 \leq b_1, a_2 \leq b_2, \ldots$, and $a_k \leq b_k$. Hence a | b.

7. Let $n, k \in \mathbb{N}$ and let $p \in \mathbb{N}$ be prime. Prove that if $p|n^k$ then $p^k|n^k$.

We need Corollary 1.6, which states that if prime p divides $a_1a_2\cdots a_k$, then it must divide at least one of the a_i . Applying this to $a_1 = a_2 = \cdots = a_k = n$, we conclude that p|n. Now applying the previous problem, we conclude that $p^k|n^k$.

8. Let $n \in \mathbb{N}$. Prove that n has an odd number of positive factors, if and only if, n is a perfect square.

Consider the set of positive factors of n. We pair them up in the following way. If m is a factor of n, then so is $\frac{n}{m}$, because $m(\frac{n}{m}) = n$. We pair off m with $\frac{n}{m}$. Typically these pairs contain two different numbers. The sole exception is if $m = \frac{n}{m}$, which arises only when $n = m^2$. Hence, if n is not a perfect square, it has an even number of positive factors. If n is a perfect square, it has an even number of factors apart from \sqrt{n} , which is one more positive factor, leaving an odd number.

9. Use the Miller-Rabin test on n = 69. Either find a witness to its compositeness, or else three potential liars.

We pull out 2's from $69 - 1 = 68 = 2^2 \cdot 17$, so d = 17 and s = 2. If we choose a = 2, we compute $a^d \pmod{n}$ and $a^{2d} \pmod{n}$, getting 41 and 25 respectively. Hence a is a witness to the compositeness of 69.

10. Use the Miller-Rabin test on n = 66683. Either find a witness to its compositeness, or else three potential liars.

We pull out 2's from $66682 = 2 \cdot 33341$, so d = 33341 and s = 1. If we choose a = 2, we compute $a^d \pmod{n}$, getting -1. If we choose a = 3, we compute $a^d \pmod{n}$, getting 1. If we choose a = 5, we compute $a^d \pmod{n}$, getting -1. Hence either n is prime or we have found three liars.

Note: choosing a = 4 is not worthwhile, since we know that $4^d = (2^d)^2$.