
MATH 521A: Abstract Algebra
Homework 2 Solutions

1. Let a, b ∈ N, and set d = gcd(a, b). Prove that gcd(a
d
, b
d
) = 1.

There must be a′, b′ ∈ N with a = da′, b = db′. Suppose that gcd(a′, b′) = k > 1.
Then k is a common divisor of a′, b′, and there are a′′, b′′ ∈ N with a′ = ka′′, b′ = kb′′.
Substituting, we get a = (dk)a′′, b = (dk)b′′. Now dk > d is a common divisor of a, b,
which contradicts the definition of gcd. Hence in fact k = 1.

2. Let a, b, c ∈ Z. Consider the following equation (in variables x, y):

ax + by = c

Prove that this equation has integer solutions, if and only if gcd(a, b)|c.

Set d = gcd(a, b). First, if d|c, then there is some k ∈ N with c = dk. We apply
Theorem 1.2 to get u, v ∈ Z with au+bv = d. Multiplying by k, we get a(uk)+b(vk) =
dk = c. Taking x = uk, y = vk, we are done.

Suppose now that there are x, y satisfying the equation. If c = 0 then d|c. If c > 0
then c is in PLC(a, b) and hence d|c by the previous homework set. If instead c < 0
then we take x′ = −x, y′ = −y, and get ax′ + by′ = (−c), so −c is in PLC(a, b). By
the previous homework set, d|(−c), and hence d|c.

3. Use the Generalized Euclidean Algorithm to find gcd(196, 308) and also to find integers
x, y satisfying 196x + 308y = gcd(196, 308).

Step 1: 308 = 1 · 196 + 112 Step 2: 196 = 1 · 112 + 84 Step 3: 112 = 1 · 84 + 28 Step
4: 84 = 3 · 28 + 0. Hence we conclude that gcd(196, 308) = 28. Continuing, Step 5:
28 = 112 − 1 · 84 Step 6: 28 = 112 − 1 · (196 − 1 · 112) = 2 · 112 − 1 · 196 Step 7:
28 = 2 · (308− 1 · 196)− 1 · 196 = 2 · 308− 3 · 196. Hence we take x = −3, y = 2.

4. Let a, b ∈ N. Prove that the Euclidean Algorithm will find gcd(a, b) in at most min(a, b)
steps.

Suppose a > b for convenience. By the Division Algorithm, the remainder must de-
crease at every step. Hence the first remainder must be at most b−1, the next at most
b− 2, etc. Once the remainder is zero the algorithm terminates; this can take at most
b steps.

5. Find all primes between 1025 and 1075.

There are just eight: 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069.

6. Let a, b, n ∈ N. Prove that a|b if and only if an|bn.

One direction is easier: if a|b, then for some c ∈ N, b = ca. Raising to the power n, we
get bn = cnan, so an|bn.

Suppose now that an|bn. For this direction we need the Fundamental Theorem of
Arithmetic. Let p1, p2, . . . , pk be the primes dividing either or both of a, b. We write



a = pa11 pa22 · · · p
ak
k and b = pb11 p

b2
2 · · · p

bk
k , for some ai, bi ∈ N0. Raising to the power n,

we get an = pna11 pna22 · · · pnakk and bn = pnb11 pnb22 · · · p
nbk
k . Since an|bn, we have na1 ≤ nb1,

na2 ≤ nb2, . . . , and nak ≤ nbk. Dividing each inequality by n, we get a1 ≤ b1, a2 ≤ b2,
. . . , and ak ≤ bk. Hence a|b.

7. Let n, k ∈ N and let p ∈ N be prime. Prove that if p|nk then pk|nk.

We need Corollary 1.6, which states that if prime p divides a1a2 · · · ak, then it must
divide at least one of the ai. Applying this to a1 = a2 = · · · = ak = n, we conclude
that p|n. Now applying the previous problem, we conclude that pk|nk.

8. Let n ∈ N. Prove that n has an odd number of positive factors, if and only if, n is a
perfect square.

Consider the set of positive factors of n. We pair them up in the following way. If m is
a factor of n, then so is n

m
, because m( n

m
) = n. We pair off m with n

m
. Typically these

pairs contain two different numbers. The sole exception is if m = n
m

, which arises only
when n = m2. Hence, if n is not a perfect square, it has an even number of positive
factors. If n is a perfect square, it has an even number of factors apart from

√
n, which

is one more positive factor, leaving an odd number.

9. Use the Miller-Rabin test on n = 69. Either find a witness to its compositeness, or else
three potential liars.

We pull out 2’s from 69 − 1 = 68 = 22 · 17, so d = 17 and s = 2. If we choose a = 2,
we compute ad (mod n) and a2d (mod n), getting 41 and 25 respectively. Hence a is
a witness to the compositeness of 69.

10. Use the Miller-Rabin test on n = 66683. Either find a witness to its compositeness, or
else three potential liars.

We pull out 2’s from 66682 = 2 ·33341, so d = 33341 and s = 1. If we choose a = 2, we
compute ad (mod n), getting −1. If we choose a = 3, we compute ad (mod n), getting
1. If we choose a = 5, we compute ad (mod n), getting −1. Hence either n is prime
or we have found three liars.
Note: choosing a = 4 is not worthwhile, since we know that 4d = (2d)2.


