MATH 521A: Abstract Algebra
Homework 2 Solutions

1. Let a,b € N, and set d = ged(a, b). Prove that ged(2,2) = 1.

d’d
There must be a/,b' € N with a = da’,b = db'. Suppose that ged(a’,b') = k& > 1.
Then k is a common divisor of @/, ¥/, and there are a”,0" € N with o’ = ka”, V' = kb".
Substituting, we get a = (dk)a”,b = (dk)V". Now dk > d is a common divisor of a, b,
which contradicts the definition of gcd. Hence in fact £ = 1.

Let a,b,c € Z. Consider the following equation (in variables x,y):
ar +by =c

Prove that this equation has integer solutions, if and only if ged(a, b)|c.

Set d = ged(a,b). First, if d|c, then there is some k € N with ¢ = dk. We apply
Theorem 1.2 to get u, v € Z with au+bv = d. Multiplying by k, we get a(uk)+b(vk) =
dk = c. Taking x = uk,y = vk, we are done.

Suppose now that there are z,y satisfying the equation. If ¢ = 0 then d|c. If ¢ > 0
then ¢ is in PLC(a,b) and hence d|c by the previous homework set. If instead ¢ < 0
then we take 2’ = —x,y = —y, and get ax’ + by’ = (—c), so —c is in PLC(a,b). By
the previous homework set, d|(—c), and hence d|c.

Use the Generalized Euclidean Algorithm to find ged(196, 308) and also to find integers
x,y satisfying 196z + 308y = ged(196, 308).

Step 1: 308 =1-196+ 112 Step 2: 196 =1-112+84 Step 3: 112 =1-84+28 Step
4: 84 = 3-28 + 0. Hence we conclude that ged(196,308) = 28. Continuing, Step 5:
28=112—1-84 Step6: 28=112—-1-(196—1-112) =2-112—-1-196 Step T:
28=2-(308—=1-196) —1-196 = 2-308 — 3 - 196. Hence we take z = —3,y = 2.

Let a,b € N. Prove that the Euclidean Algorithm will find ged(a, b) in at most min(a, b)
steps.

Suppose a > b for convenience. By the Division Algorithm, the remainder must de-
crease at every step. Hence the first remainder must be at most b— 1, the next at most
b — 2, etc. Once the remainder is zero the algorithm terminates; this can take at most
b steps.

Find all primes between 1025 and 1075.

There are just eight: 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069.

Let a,b,n € N. Prove that a|b if and only if a™|b™.

One direction is easier: if a|b, then for some ¢ € N, b = ca. Raising to the power n, we
get b" = c"a”", so a™|b™.

Suppose now that a"|b". For this direction we need the Fundamental Theorem of
Arithmetic. Let p1, po, ..., pr be the primes dividing either or both of a,b. We write



10.

a=pi'ps?---pik and b = plfng x -pZ’“, for some a;,b; € Ny. Raising to the power n,

we get a® = plph2 ... pi™ and b = PP - - - i, Since a”|b”, we have na; < nby,
nas < nby, ..., and nar < nbx. Dividing each inequality by n, we get ay < by, as < bo,

..., and a; < by. Hence alb.

Let n,k € N and let p € N be prime. Prove that if p|n® then p*|nk.

We need Corollary 1.6, which states that if prime p divides ajas - - - ai, then it must
divide at least one of the a;. Applying this to a; = ay = -+ = ap = n, we conclude
that p|n. Now applying the previous problem, we conclude that p*|n*.

Let n € N. Prove that n has an odd number of positive factors, if and only if, n is a
perfect square.

Consider the set of positive factors of n. We pair them up in the following way. If m is
a factor of n, then so is 7, because m() = n. We pair off m with ™. Typically these
pairs contain two different numbers. The sole exception is if m = 7, which arises only
when n = m?. Hence, if n is not a perfect square, it has an even number of positive
factors. If n is a perfect square, it has an even number of factors apart from y/n, which

is one more positive factor, leaving an odd number.

Use the Miller-Rabin test on n = 69. Either find a witness to its compositeness, or else
three potential liars.

We pull out 2’s from 69 — 1 = 68 = 2217, so d = 17 and s = 2. If we choose a = 2,
we compute a? (mod n) and a*® (mod n), getting 41 and 25 respectively. Hence a is
a witness to the compositeness of 69.

Use the Miller-Rabin test on n = 66683. Either find a witness to its compositeness, or
else three potential liars.

We pull out 2’s from 66682 = 2-33341, so d = 33341 and s = 1. If we choose a = 2, we
compute a? (mod n), getting —1. If we choose a = 3, we compute a? (mod n), getting
1. If we choose a = 5, we compute a? (mod n), getting —1. Hence either n is prime
or we have found three liars.

Note: choosing a = 4 is not worthwhile, since we know that 4¢ = (2%)2.



