MATH 521A: Abstract Algebra

Homework 2 Solutions

1. Let $a, b \in \mathbb{N}$, and set $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

There must be $a^{\prime}, b^{\prime} \in \mathbb{N}$ with $a=d a^{\prime}, b=d b^{\prime}$. Suppose that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=k>1$. Then k is a common divisor of a^{\prime}, b^{\prime}, and there are $a^{\prime \prime}, b^{\prime \prime} \in \mathbb{N}$ with $a^{\prime}=k a^{\prime \prime}, b^{\prime}=k b^{\prime \prime}$. Substituting, we get $a=(d k) a^{\prime \prime}, b=(d k) b^{\prime \prime}$. Now $d k>d$ is a common divisor of a, b, which contradicts the definition of gcd. Hence in fact $k=1$.
2. Let $a, b, c \in \mathbb{Z}$. Consider the following equation (in variables x, y):

$$
a x+b y=c
$$

Prove that this equation has integer solutions, if and only if $\operatorname{gcd}(a, b) \mid c$.
Set $d=\operatorname{gcd}(a, b)$. First, if $d \mid c$, then there is some $k \in \mathbb{N}$ with $c=d k$. We apply Theorem 1.2 to get $u, v \in \mathbb{Z}$ with $a u+b v=d$. Multiplying by k, we get $a(u k)+b(v k)=$ $d k=c$. Taking $x=u k, y=v k$, we are done.
Suppose now that there are x, y satisfying the equation. If $c=0$ then $d \mid c$. If $c>0$ then c is in $\operatorname{PLC}(a, b)$ and hence $d \mid c$ by the previous homework set. If instead $c<0$ then we take $x^{\prime}=-x, y^{\prime}=-y$, and get $a x^{\prime}+b y^{\prime}=(-c)$, so $-c$ is in $\operatorname{PLC}(a, b)$. By the previous homework set, $d \mid(-c)$, and hence $d \mid c$.
3. Use the Generalized Euclidean Algorithm to find gcd $(196,308)$ and also to find integers x, y satisfying $196 x+308 y=\operatorname{gcd}(196,308)$.

Step 1: $308=1 \cdot 196+112 \quad$ Step 2: $196=1 \cdot 112+84 \quad$ Step 3: $112=1 \cdot 84+28 \quad$ Step 4: $84=3 \cdot 28+0$. Hence we conclude that $\operatorname{gcd}(196,308)=28$. Continuing, Step 5: $28=112-1 \cdot 84 \quad$ Step $6: 28=112-1 \cdot(196-1 \cdot 112)=2 \cdot 112-1 \cdot 196 \quad$ Step 7: $28=2 \cdot(308-1 \cdot 196)-1 \cdot 196=2 \cdot 308-3 \cdot 196$. Hence we take $x=-3, y=2$.
4. Let $a, b \in \mathbb{N}$. Prove that the Euclidean Algorithm will find $\operatorname{gcd}(a, b)$ in at most $\min (a, b)$ steps.
Suppose $a>b$ for convenience. By the Division Algorithm, the remainder must decrease at every step. Hence the first remainder must be at most $b-1$, the next at most $b-2$, etc. Once the remainder is zero the algorithm terminates; this can take at most b steps.
5. Find all primes between 1025 and 1075.

There are just eight: 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069.
6. Let $a, b, n \in \mathbb{N}$. Prove that $a \mid b$ if and only if $a^{n} \mid b^{n}$.

One direction is easier: if $a \mid b$, then for some $c \in \mathbb{N}, b=c a$. Raising to the power n, we get $b^{n}=c^{n} a^{n}$, so $a^{n} \mid b^{n}$.
Suppose now that $a^{n} \mid b^{n}$. For this direction we need the Fundamental Theorem of Arithmetic. Let $p_{1}, p_{2}, \ldots, p_{k}$ be the primes dividing either or both of a, b. We write
$a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{b_{k}}$, for some $a_{i}, b_{i} \in \mathbb{N}_{0}$. Raising to the power n, we get $a^{n}=p_{1}^{n a_{1}} p_{2}^{n a_{2}} \cdots p_{k}^{n a_{k}}$ and $b^{n}=p_{1}^{n b_{1}} p_{2}^{n b_{2}} \cdots p_{k}^{n b_{k}}$. Since $a^{n} \mid b^{n}$, we have $n a_{1} \leq n b_{1}$, $n a_{2} \leq n b_{2}, \ldots$, and $n a_{k} \leq n b_{k}$. Dividing each inequality by n, we get $a_{1} \leq b_{1}, a_{2} \leq b_{2}$, \ldots, and $a_{k} \leq b_{k}$. Hence $a \mid b$.
7. Let $n, k \in \mathbb{N}$ and let $p \in \mathbb{N}$ be prime. Prove that if $p \mid n^{k}$ then $p^{k} \mid n^{k}$.

We need Corollary 1.6, which states that if prime p divides $a_{1} a_{2} \cdots a_{k}$, then it must divide at least one of the a_{i}. Applying this to $a_{1}=a_{2}=\cdots=a_{k}=n$, we conclude that $p \mid n$. Now applying the previous problem, we conclude that $p^{k} \mid n^{k}$.
8. Let $n \in \mathbb{N}$. Prove that n has an odd number of positive factors, if and only if, n is a perfect square.

Consider the set of positive factors of n. We pair them up in the following way. If m is a factor of n, then so is $\frac{n}{m}$, because $m\left(\frac{n}{m}\right)=n$. We pair off m with $\frac{n}{m}$. Typically these pairs contain two different numbers. The sole exception is if $m=\frac{n}{m}$, which arises only when $n=m^{2}$. Hence, if n is not a perfect square, it has an even number of positive factors. If n is a perfect square, it has an even number of factors apart from \sqrt{n}, which is one more positive factor, leaving an odd number.
9. Use the Miller-Rabin test on $n=69$. Either find a witness to its compositeness, or else three potential liars.

We pull out 2 's from $69-1=68=2^{2} \cdot 17$, so $d=17$ and $s=2$. If we choose $a=2$, we compute $a^{d}(\bmod n)$ and $a^{2 d}(\bmod n)$, getting 41 and 25 respectively. Hence a is a witness to the compositeness of 69 .
10. Use the Miller-Rabin test on $n=66683$. Either find a witness to its compositeness, or else three potential liars.
We pull out 2's from $66682=2 \cdot 33341$, so $d=33341$ and $s=1$. If we choose $a=2$, we compute $a^{d}(\bmod n)$, getting -1 . If we choose $a=3$, we compute $a^{d}(\bmod n)$, getting 1. If we choose $a=5$, we compute $a^{d}(\bmod n)$, getting -1 . Hence either n is prime or we have found three liars.
Note: choosing $a=4$ is not worthwhile, since we know that $4^{d}=\left(2^{d}\right)^{2}$.

