MATH 521A: Abstract Algebra

Homework 2: Due Sep. 13

1. Let $a, b \in \mathbb{N}$, and set $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
2. Let $a, b, c \in \mathbb{Z}$. Consider the following equation (in variables x, y):

$$
a x+b y=c
$$

Prove that this equation has integer solutions, if and only if $\operatorname{gcd}(a, b) \mid c$.
3. Use the Generalized Euclidean Algorithm to find $\operatorname{gcd}(196,308)$ and also to find integers x, y satisfying $196 x+308 y=\operatorname{gcd}(196,308)$.
4. Let $a, b \in \mathbb{N}$. Prove that the Euclidean Algorithm will find $\operatorname{gcd}(a, b)$ in at most $\min (a, b)$ steps.
5. Find all primes between 1025 and 1075.

6 . Let $a, b, n \in \mathbb{N}$. Prove that $a \mid b$ if and only if $a^{n} \mid b^{n}$.
7. Let $n, k \in \mathbb{N}$ and let $p \in \mathbb{N}$ be prime. Prove that if $p \mid n^{k}$ then $p^{k} \mid n^{k}$.
8. Let $n \in \mathbb{N}$. Prove that n has an odd number of positive factors, if and only if, n is a perfect square.
9. Use the Miller-Rabin test on $n=69$. Either find a witness to its compositeness, or else three potential liars.
10. Use the Miller-Rabin test on $n=66683$. Either find a witness to its compositeness, or else three potential liars.

