MATH 521A: Abstract Algebra

Homework 3: Due Sep. 27

1. Let $n, c \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Suppose that $a \equiv b(\bmod n)$. Prove that $a c \equiv b c$ $(\bmod n)$. Show that the converse does not hold [by giving an example of a, b, c, n where $a c \equiv b c(\bmod n)$ but $a \not \equiv b(\bmod n)]$.
2. Find an integer x such that $x^{2} \equiv 2(\bmod 31)$.
3. Which of $[0],[1],[2],[3],[4]$ is equal to $\left[2^{\left(3^{45}\right)}\right]$, in \mathbb{Z}_{5} ?
4. Let $a, b \in \mathbb{Z}$. Prove that $(a+b)^{3} \equiv a^{3}+b^{3}(\bmod 3)$. This is (a special case of) a theorem called the Freshman's Dream.
5. Let $n \in \mathbb{N}$, and $a, b \in \mathbb{Z}$. Suppose that $a \equiv b(\bmod n)$. Prove that $\operatorname{gcd}(a, n)=$ $\operatorname{gcd}(b, n)$.
6. Write the \oplus-addition and \odot-multiplication tables of \mathbb{Z}_{9}.
7. For \mathbb{Z}_{9}, find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.
8. For \mathbb{Z}_{9}, find all the units and specify each inverse.

We define $\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\left\{(a, b): a \in \mathbb{Z}_{3}, b \in \mathbb{Z}_{3}\right\}$, the set of ordered pairs of elements, one from \mathbb{Z}_{3} and one from another copy of \mathbb{Z}_{3}. We define operations in the natural way, i.e. componentwise:
$(a, b) \oplus\left(a^{\prime}, b^{\prime}\right)=\left(a \oplus_{3} a^{\prime}, b \oplus_{3} b^{\prime}\right) \quad$ and $\quad(a, b) \odot\left(a^{\prime}, b^{\prime}\right)=\left(a \odot_{3} a^{\prime}, b \odot_{3} b^{\prime}\right)$.
9. Write the \oplus-addition and \odot-multiplication tables of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
10. For $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.
11. For $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, find all the units and specify each inverse.

