MATH 521A: Abstract Algebra

Homework 3: Due Sep. 27

- 1. Let $n, c \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Suppose that $a \equiv b \pmod{n}$. Prove that $ac \equiv bc \pmod{n}$. Show that the converse does not hold [by giving an example of a, b, c, n where $ac \equiv bc \pmod{n}$ but $a \not\equiv b \pmod{n}$].
- 2. Find an integer x such that $x^2 \equiv 2 \pmod{31}$.
- 3. Which of [0], [1], [2], [3], [4] is equal to $[2^{(3^{45})}]$, in \mathbb{Z}_5 ?
- 4. Let $a, b \in \mathbb{Z}$. Prove that $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$. This is (a special case of) a theorem called the Freshman's Dream.
- 5. Let $n \in \mathbb{N}$, and $a, b \in \mathbb{Z}$. Suppose that $a \equiv b \pmod{n}$. Prove that gcd(a, n) = gcd(b, n).
- 6. Write the \oplus -addition and \odot -multiplication tables of \mathbb{Z}_9 .
- 7. For \mathbb{Z}_9 , find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.
- 8. For \mathbb{Z}_9 , find all the units and specify each inverse.

We define $\mathbb{Z}_3 \times \mathbb{Z}_3 = \{(a, b) : a \in \mathbb{Z}_3, b \in \mathbb{Z}_3\}$, the set of ordered pairs of elements, one from \mathbb{Z}_3 and one from another copy of \mathbb{Z}_3 . We define operations in the natural way, i.e. componentwise: $(a, b) \oplus (a', b') = (a \oplus_3 a', b \oplus_3 b')$ and $(a, b) \odot (a', b') = (a \odot_3 a', b \odot_3 b')$.

- 9. Write the \oplus -addition and \odot -multiplication tables of $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 10. For $\mathbb{Z}_3 \times \mathbb{Z}_3$, find the neutral additive element, the neutral multiplicative element, and all zero divisors. Be sure to justify your answer.
- 11. For $\mathbb{Z}_3 \times \mathbb{Z}_3$, find all the units and specify each inverse.