
MATH 521A: Abstract Algebra
Homework 4 Solutions

1. Use the generalized Euclidean algorithm (with 101, 999) to find the congruence class
satisfying the linear modular equation 101x ≡ 1 (mod 999).

Step 1: 999 = 9 · 101 + 90. Step 2: 101 = 1 · 90 + 11. Step 3: 90 = 8 · 11 + 2. Step 4:
11 = 5·2+1. We now back-substitute: 1 = 11−5·2 = 11−5·(90−8·11) = 41·11−5·90 =
41·(101−1·90)−5·90 = 41·101−46·90 = 41·101−46·(999−9·101) = 455·101−46·999.
Taking both sides mod 999 gives us [455]� [101] = [1].

2. Find all congruence classes satisfying the linear modular equation 24x ≡ 10 (mod 35).

We use the generalized Euclidean algorithm (or trial and error) to discover the recipro-
cal of 24 modulo 35, which is 19. Multiplying, we get 19 ·24x ≡ 19 ·10, or x ≡ 190 ≡ 15
(mod 35). Hence we get the single equivalence class [15], modulo 35.

3. Find all congruence classes satisfying the linear modular equation 25x ≡ 10 (mod 35).

We use our wonderful theorem with a = 5, and conclude that this linear modular
equation is equivalent to 5x ≡ 2 (mod 7). We now use the generalized Euclidean
algorithm (or trial and error) to discover the reciprocal of 5 modulo 7, which is 3.
Multiplying, we get 3 · 5x ≡ 3 · 2, or x ≡ 6 (mod 7). Hence there is a single solution
modulo 7, but the problem is about mod 35. There are five equivalence classes modulo
35 solving the equation, namely [6], [13], [20], [27], [34].

4. Find all congruence classes satisfying the linear modular equation 25x ≡ 11 (mod 35).

We will prove that there are no solutions, by contradiction. A solution would have
35|(25x − 11), which would give some k ∈ Z with 35k = 25x − 11. Rearranging, we
get 5(−7k + 5x) = 11. This would give us 5|11, which we know is impossible.

5. Let R be a commutative ring with identity. Prove that no element can be both a unit
and a zero divisor.

Suppose that a ∈ R is a unit and a zero divisor. Then a 6= 0, and there are nonzero
b, c ∈ R with 1 = ab and 0 = ac. We now have c = c · 1 = c(ab) = (ca)b = 0b = 0. This
is a contradiction, as c is nonzero.

6. Let R be a commutative ring with identity. Let a1, a2 ∈ R be units, and b1, b2 ∈ R be
nonzero nonunits. Prove that a1a2 is a unit, while a1b1 and b1b2 are nonunits.

Since a1, a2 are units, there are nonzero a′1, a
′
2 ∈ R with a1a

′
1 = 1 = a2a

′
2. Now we have

(a1a2)(a
′
1a

′
2) = (a1a

′
1)(a2a

′
2) = 1, so a1a2 is a unit. Suppose now that a1b1 were a unit.

Then there would be some nonzero c ∈ R with a1b1c = 1. But now b1(a1c) = 1, so b1
is a unit, which contradicts hypothesis. Hence a1b1 is a nonunit. The proof for b1b2 is
similar; if it were a unit then for some c ∈ R we would have b1b2c = 1, so b1(b2c) = 1,
so b1 would be a unit. Since it’s not, b1b2 is a nonunit.



7. Let R be a commutative ring with identity. Let a1, a2 ∈ R be zero divisors, and
b1, b2 ∈ R be nonzero and not zero divisors. Prove that a1b1 is a zero divisor, while b1b2
is not a zero divisor. Must a1a2 be a zero divisor?

Since a1 is a zero divisor, there is some a′1 with a1a
′
1 = 0. Hence (a1b1)a

′
1 = (a1a

′
1)b1 =

0b1 = 0, and also a1b1 6= 0 (else b1 would be a zero divisor), so a1b1 is a zero divisor.
Note that a1a2 might NOT be a zero divisor, because a1a2 might be zero, which is not
a zero divisor. Lastly, suppose that b1b2 were a zero divisor. Then there would be some
nonzero c with (b1b2)c = 0. But then b1(b2c) = 0. Since b2 is not a zero divisor, then
b2c is not zero, so that makes b1 a zero divisor. This is a contradiction, so b1b2 is not
a zero divisor.

8. Let R be a ring, with S a subring. Prove that 0R = 0S, and that every zero divisor of
S is also a zero divisor of R.

We have 0R ∈ S, because that’s part of the definition of subring. Also, for each s ∈ S,
0R + s = s, because 0R is neutral in R. Hence 0R is additively neutral in S; since this
element is unique, in fact 0R = 0S. Suppose now that a, b ∈ S are neither 0S, and also
ab = 0S. Well, since 0R = 0S, we have a, b ∈ R; also neither is 0R, and ab = 0R. So if
a is a zero divisor in S, then it is a zero divisor in R.

9. Let R be a ring, with S a subring. Suppose that they share a multiplicative neutral
element, i.e. 1R = 1S. Suppose that a ∈ S, and that a is a unit in S. Prove that a is a
unit in R.

Suppose that a is a unit in S; then neither is 0S and there is some b ∈ S with
ab = 1S. But also a, b ∈ R, neither is 0S = 0R (as proved in the previous problem),
and ab = 1S = 1R. Hence a is also a unit in R.

10. Give an example of a commutative ring with identity R, with subring S, where the
rings do NOT share a multiplicative neutral element. That is, with 1R 6= 1S. Further,
find an element a ∈ S that is a unit in S but NOT a unit in R.

We’ve already seen such an example, namely R = Z3 × Z3. This has 1R = ([1], [1]).
We now take the subring S = {([0], [0]), ([0], [1]), ([0], [2])}. This has 1S = ([0], [1]),
which is actually a zero divisor in R. Now we can take a = ([0], [2]) ∈ S, which has
a�a = 1S, so a is a unit in S. However a is a zero divisor in R (e.g. a� ([1], [0]) = 0R)
so is certainly not a unit there.


