MATH 521A: Abstract Algebra

Homework 4 Solutions

1. Use the generalized Euclidean algorithm (with 101, 999) to find the congruence class satisfying the linear modular equation $101 x \equiv 1(\bmod 999)$.
Step 1: $999=9 \cdot 101+90$. Step 2: $101=1 \cdot 90+11$. Step 3: $90=8 \cdot 11+2$. Step 4: $11=5 \cdot 2+1$. We now back-substitute: $1=11-5 \cdot 2=11-5 \cdot(90-8 \cdot 11)=41 \cdot 11-5 \cdot 90=$ $41 \cdot(101-1 \cdot 90)-5 \cdot 90=41 \cdot 101-46 \cdot 90=41 \cdot 101-46 \cdot(999-9 \cdot 101)=455 \cdot 101-46 \cdot 999$. Taking both sides mod 999 gives us [455] $\odot[101]=[1]$.
2. Find all congruence classes satisfying the linear modular equation $24 x \equiv 10(\bmod 35)$.

We use the generalized Euclidean algorithm (or trial and error) to discover the reciprocal of 24 modulo 35 , which is 19 . Multiplying, we get $19 \cdot 24 x \equiv 19 \cdot 10$, or $x \equiv 190 \equiv 15$ $(\bmod 35)$. Hence we get the single equivalence class [15], modulo 35.
3. Find all congruence classes satisfying the linear modular equation $25 x \equiv 10(\bmod 35)$.

We use our wonderful theorem with $a=5$, and conclude that this linear modular equation is equivalent to $5 x \equiv 2(\bmod 7)$. We now use the generalized Euclidean algorithm (or trial and error) to discover the reciprocal of 5 modulo 7 , which is 3 . Multiplying, we get $3 \cdot 5 x \equiv 3 \cdot 2$, or $x \equiv 6(\bmod 7)$. Hence there is a single solution modulo 7 , but the problem is about mod 35 . There are five equivalence classes modulo 35 solving the equation, namely [6], [13], [20], [27], [34].
4. Find all congruence classes satisfying the linear modular equation $25 x \equiv 11(\bmod 35)$.

We will prove that there are no solutions, by contradiction. A solution would have $35 \mid(25 x-11)$, which would give some $k \in \mathbb{Z}$ with $35 k=25 x-11$. Rearranging, we get $5(-7 k+5 x)=11$. This would give us $5 \mid 11$, which we know is impossible.
5. Let R be a commutative ring with identity. Prove that no element can be both a unit and a zero divisor.
Suppose that $a \in R$ is a unit and a zero divisor. Then $a \neq 0$, and there are nonzero $b, c \in R$ with $1=a b$ and $0=a c$. We now have $c=c \cdot 1=c(a b)=(c a) b=0 b=0$. This is a contradiction, as c is nonzero.
6. Let R be a commutative ring with identity. Let $a_{1}, a_{2} \in R$ be units, and $b_{1}, b_{2} \in R$ be nonzero nonunits. Prove that $a_{1} a_{2}$ is a unit, while $a_{1} b_{1}$ and $b_{1} b_{2}$ are nonunits.

Since a_{1}, a_{2} are units, there are nonzero $a_{1}^{\prime}, a_{2}^{\prime} \in R$ with $a_{1} a_{1}^{\prime}=1=a_{2} a_{2}^{\prime}$. Now we have $\left(a_{1} a_{2}\right)\left(a_{1}^{\prime} a_{2}^{\prime}\right)=\left(a_{1} a_{1}^{\prime}\right)\left(a_{2} a_{2}^{\prime}\right)=1$, so $a_{1} a_{2}$ is a unit. Suppose now that $a_{1} b_{1}$ were a unit. Then there would be some nonzero $c \in R$ with $a_{1} b_{1} c=1$. But now $b_{1}\left(a_{1} c\right)=1$, so b_{1} is a unit, which contradicts hypothesis. Hence $a_{1} b_{1}$ is a nonunit. The proof for $b_{1} b_{2}$ is similar; if it were a unit then for some $c \in R$ we would have $b_{1} b_{2} c=1$, so $b_{1}\left(b_{2} c\right)=1$, so b_{1} would be a unit. Since it's not, $b_{1} b_{2}$ is a nonunit.
7. Let R be a commutative ring with identity. Let $a_{1}, a_{2} \in R$ be zero divisors, and $b_{1}, b_{2} \in R$ be nonzero and not zero divisors. Prove that $a_{1} b_{1}$ is a zero divisor, while $b_{1} b_{2}$ is not a zero divisor. Must $a_{1} a_{2}$ be a zero divisor?
Since a_{1} is a zero divisor, there is some a_{1}^{\prime} with $a_{1} a_{1}^{\prime}=0$. Hence $\left(a_{1} b_{1}\right) a_{1}^{\prime}=\left(a_{1} a_{1}^{\prime}\right) b_{1}=$ $0 b_{1}=0$, and also $a_{1} b_{1} \neq 0$ (else b_{1} would be a zero divisor), so $a_{1} b_{1}$ is a zero divisor. Note that $a_{1} a_{2}$ might NOT be a zero divisor, because $a_{1} a_{2}$ might be zero, which is not a zero divisor. Lastly, suppose that $b_{1} b_{2}$ were a zero divisor. Then there would be some nonzero c with $\left(b_{1} b_{2}\right) c=0$. But then $b_{1}\left(b_{2} c\right)=0$. Since b_{2} is not a zero divisor, then $b_{2} c$ is not zero, so that makes b_{1} a zero divisor. This is a contradiction, so $b_{1} b_{2}$ is not a zero divisor.
8. Let R be a ring, with S a subring. Prove that $0_{R}=0_{S}$, and that every zero divisor of S is also a zero divisor of R.
We have $0_{R} \in S$, because that's part of the definition of subring. Also, for each $s \in S$, $0_{R}+s=s$, because 0_{R} is neutral in R. Hence 0_{R} is additively neutral in S; since this element is unique, in fact $0_{R}=0_{S}$. Suppose now that $a, b \in S$ are neither 0_{S}, and also $a b=0_{S}$. Well, since $0_{R}=0_{S}$, we have $a, b \in R$; also neither is 0_{R}, and $a b=0_{R}$. So if a is a zero divisor in S, then it is a zero divisor in R.
9. Let R be a ring, with S a subring. Suppose that they share a multiplicative neutral element, i.e. $1_{R}=1_{S}$. Suppose that $a \in S$, and that a is a unit in S. Prove that a is a unit in R.
Suppose that a is a unit in S; then neither is 0_{S} and there is some $b \in S$ with $a b=1_{S}$. But also $a, b \in R$, neither is $0_{S}=0_{R}$ (as proved in the previous problem), and $a b=1_{S}=1_{R}$. Hence a is also a unit in R.
10. Give an example of a commutative ring with identity R, with subring S, where the rings do NOT share a multiplicative neutral element. That is, with $1_{R} \neq 1_{S}$. Further, find an element $a \in S$ that is a unit in S but NOT a unit in R.
We've already seen such an example, namely $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. This has $1_{R}=([1],[1])$. We now take the subring $S=\{([0],[0]),([0],[1]),([0],[2])\}$. This has $1_{S}=([0],[1])$, which is actually a zero divisor in R. Now we can take $a=([0],[2]) \in S$, which has $a \odot a=1_{S}$, so a is a unit in S. However a is a zero divisor in $R\left(\right.$ e.g. $\left.a \odot([1],[0])=0_{R}\right)$ so is certainly not a unit there.

