MATH 521A: Abstract Algebra

Homework 4: Due Oct. 4

1. Use the generalized Euclidean algorithm (with 101, 999) to find the congruence class satisfying the linear modular equation $101 x \equiv 1(\bmod 999)$.
2. Find all congruence classes satisfying the linear modular equation $24 x \equiv 10(\bmod 35)$.
3. Find all congruence classes satisfying the linear modular equation $25 x \equiv 10(\bmod 35)$.
4. Find all congruence classes satisfying the linear modular equation $25 x \equiv 11(\bmod 35)$.

5 . Let R be a commutative ring with identity. Prove that no element can be both a unit and a zero divisor.
6. Let R be a commutative ring with identity. Let $a_{1}, a_{2} \in R$ be units, and $b_{1}, b_{2} \in R$ be nonzero nonunits. Prove that $a_{1} a_{2}$ is a unit, while $a_{1} b_{1}$ and $b_{1} b_{2}$ are nonunits.
7. Let R be a commutative ring with identity. Let $a_{1}, a_{2} \in R$ be zero divisors, and $b_{1}, b_{2} \in R$ be nonzero and not zero divisors. Prove that $a_{1} b_{1}$ is a zero divisor, while $b_{1} b_{2}$ is not a zero divisor. Must $a_{1} a_{2}$ be a zero divisor?
8. Let R be a ring, with S a subring. Prove that $0_{R}=0_{S}$, and that every zero divisor of S is also a zero divisor of R.
9. Let R be a ring, with S a subring. Suppose that they share a multiplicative neutral element, i.e. $1_{R}=1_{S}$. Suppose that $a \in S$, and that a is a unit in S. Prove that a is a unit in R.
10. Give an example of a commutative ring with identity R, with subring S, where the rings do NOT share a multiplicative neutral element. That is, with $1_{R} \neq 1_{S}$. Further, find an element $a \in S$ that is a unit in S but NOT a unit in R.

