
MATH 521A: Abstract Algebra
Homework 5 Solutions

1. Let R be a ring with operations ⊕,�. Define its annihilation ring Rann as follows. Rann

has the same ground set as R. We define addition in Rann to be the same as in R, i.e.
∀a, b ∈ Rann, a⊕annb = a⊕b. We define multiplication in Rann as ∀a, b ∈ Rann, a�annb = 0R.
Prove that Rann is a ring.

Most of the ring axioms don’t involve multiplication, so Rann inherits them from R, since
it has the same addition. Let a, b, c ∈ Rann be arbitrary. We have a �ann (b �ann c) =
a �ann 0R = 0R = 0R �ann c = (a �ann b) �ann c. We also have a �ann (b ⊕ann c) = 0R =
0R ⊕ 0R = 0R ⊕ann 0R = (a�ann b)⊕ann (a�ann c). Lastly, we have (b⊕ann c)�ann a = 0R =
0R ⊕ann 0R = (b�ann a)⊕ann (c�ann a).

2. Let R be a ring with just two elements: {0, a}. How many such rings are there? Be sure to
prove your answer.

The addition table must be 0 + 0 = 0 = a + a, and 0 + a = a + 0 = a, because 0 is neutral
and a must have an inverse. The multiplication table must have 0 · 0 = 0 · a = a · 0 = 0, by
theorem 3.5. However we don’t know if a · a = a or a · a = 0. It turns out both are possible;
the former is isomorphic to Z2, while the latter is isomorphic to Zann
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3. Let R be a ring with identity with just three elements: {0, 1, a}. How many such rings are
there? Be sure to prove your answer.

Consider first 1+a. It can’t equal 1, else a = 0. It can’t equal a, else 1 = 0. Hence 1+a = 0.
Now consider 1 + 1. It can’t equal 1, else 1 = 0. It can’t equal 0, else 1 + 1 = 0 = 1 + a, so
a = 1. Hence 1 + 1 = a. Lastly, a + a can’t be 0, else a + a = 0 = 1 + a so a = 1, and a + a
can’t be a, else a = 0. Hence a + a = 1. Putting this all together gives the same addition
table as Z3.

For the multiplication, we know that 0 = 0 · 0 = 0 · 0 = 0 · 1 = 0 · a = 1 · 0 = a · 0. We
also know that 1 · 1 = 1 and 1 · a = a · 1 = a. The only mystery is a · a. However we know
that a = 1 + 1, so we have a · a = (1 + 1) · (1 + 1) = 1 + 1 + 1 + 1 = a + a = 1. Hence the
multiplication agrees with Z3; so any such ring must be isomorphic to Z3.

4. Let R be a ring with identity. Suppose that a, b ∈ R such that a, ab are both units. Prove
that b is a unit. Do not assume that R is commutative.

Since a is a unit, there is some c ∈ R with ca = ac = 1R. Similarly, since ab is a unit,
there is some d ∈ R with d(ab) = (ab)d = 1R. We will prove that u = da is the reciprocal
of b. First, multiply 1R = abd on the left by c, to get c = c1R = (ca)bd = 1Rbd = bd.
Multiply this by a on the right to get 1R = ca = b(da) = bu. The other direction is easier;
ub = (da)b = d(ab) = 1R. Hence b is a unit.

5. Let R = {( a b
c d ) : a, b, c, d ∈ Q}, the ring of 2 × 2 matrices over Q, with operations of the

usual matrix addition and matrix multiplication. Prove that every nonzero element of R is
either a unit or a zero divisor.

The trick is to find a test that classifies elements, namely the determinant ad−bc. Claim 1: If

ad−bc 6= 0, then ( a b
c d ) is a unit. Proof: Set f = ad−bc and just compute ( a b

c d )
(

d/f −b/f
−c/f a/f

)
=



( 1 0
0 1 ) = 1R.

Claim 2: If ad − bc = 0, then ( a b
c d ) is a (two-sided) zero divisor. Compute ( a b

c d )
(

d −b
−c a

)
=(

d −b
−c a

)
( a b
c d ) =

(
ad−bc 0

0 ad−bc
)

= ( 0 0
0 0 ) = 0R.

6. Let R be a ring. Consider the diagonal map f : R → R × R given by f : r 7→ (r, r). Prove
that f is a (ring) homomorphism.

Let a, b ∈ R. We have f(a + b) = (a + b, a + b) = (a, a) + (b, b) = f(a) + f(b), and
f(ab) = (ab, ab) = (a, a)(b, b) = f(a)f(b).

7. Let R, S, T be rings. Prove that the ring (R×S)×T is isomorphic to the ring R× (S×T ).

We need to find a candidate isomorphism, and the natural choice is f : ((x, y), z) 7→
(x, (y, z)). First, let’s prove it’s a homomorphism. Let x, x′ ∈ R, y, y′ ∈ S, z, z′ ∈ T , and we
have f(((x, y), z) + ((x′, y′), z′)) = f(((x, y) + (x′, y′), z + z′)) = f(((x+ x′, y + y′), z + z′)) =
(x+x′, (y+y′, z+z′)) = (x, (y, z))+(x′, (y′, z′)) = f(((x, y), z))+f(((x′, y′), z′)). Similarly, we
have f(((x, y), z)((x′, y′), z′)) = f(((xx′, yy′), zz′)) = (xx′, (yy′, zz′)) = (x, (y, z))(x′, (y′, z′)) =
f(((x, y), z)))f(((x′, y′), z′))).

Now, to prove bijection, we need to prove surjectivity and injectivity. Suppose that f(((x, y), z))) =
f(((x′, y′), z′))). Then (x, (y, z)) = (x′, (y′, z′)) and hence x = x′, y = y′, z = z′, so
((x, y), z) = ((x′, y′), z′). This proves one-to-one. Lastly, let (a, (b, c)) ∈ R × (S × T ).
We see that ((a, b), c) ∈ (R× S)× T and f(((a, b), c)) = (a, (b, c)). This proves onto.

8. Prove that Z9 is not isomorphic to Z3 × Z3, despite having the same number of elements.

Suppose there were some isomorphism f : Z9 → Z3×Z3. Note that if a, b ∈ Z9 with ab = 19,
then f(a)f(b) = f(ab) = f(19) = 13×3, so every unit in Z9 must map to a unit in Z3 × Z3.
However we found six units in Z9 and only four in Z3 × Z3. Thus no such isomorphism can
exist. One could consider zero divisors instead.

9. Consider the function f : Z7 → Z56 given by f : [x]7 7→ [8x]56. Prove that f is an injective
homomorphism, but not an isomorphism.

Let [x], [y] ∈ Z7. We have f([x] + [y]) = f([x + y]) = [8(x + y)]56 = [8x]56 + [8y]56 =
f([x]) + f([y]), and f([x][y]) = f([xy]) = [8(xy)]56 = [8(xy)]56 + [56(xy)]56 = [64(xy)]56 =
[8x]56[8y]56 = f([x])f([y]). Hence f is a homomorphism. Proving injectivity is as simple as
noting the image of f is {[0]56, [8]56, [16]56, [24]56, [32]56, [40]56, [48]56}, which has just seven
elements. Since 7 < 56, f is not surjective.

10. Consider the ring R, on ground set Z, with operations ⊕,� defined as a ⊕ b = a + b + 1,
a� b = ab + a + b. Prove that R is isomorphic to Z. (you may assume that R is a ring)

The hard part is finding the right isomorphism, which is f : R → Z given by f(x) = x + 1.
First, let’s prove homomorphism. Let a, b ∈ Z. We have f(a⊕b) = f(a+b+1) = a+b+2 =
(a + 1) + (b + 1) = f(a) + f(b). We also have f(a � b) = f(ab + a + b) = ab + a + b + 1 =
(a + 1)(b + 1) = f(a)f(b). Lastly we prove isomorphism. Suppose that f(a) = f(b). Then
a+ 1 = b+ 1, so a = b. Hence f is injective. Let a ∈ Z; we have f(a− 1) = (a− 1) + 1 = a,
so f is surjective.


