MATH 521A: Abstract Algebra

Homework 5 Solutions

1. Let R be a ring with operations \oplus, \odot. Define its annihilation ring $R^{a n n}$ as follows. $R^{a n n}$ has the same ground set as R. We define addition in $R^{a n n}$ to be the same as in R, i.e. $\forall a, b \in R^{a n n}, a \oplus^{a n n} b=a \oplus b$. We define multiplication in $R^{a n n}$ as $\forall a, b \in R^{a n n}, a \odot^{a n n} b=0_{R}$. Prove that $R^{a n n}$ is a ring.
Most of the ring axioms don't involve multiplication, so $R^{a n n}$ inherits them from R, since it has the same addition. Let $a, b, c \in R^{a n n}$ be arbitrary. We have $a \odot^{a n n}\left(b \odot^{a n n} c\right)=$ $a \odot^{a n n} 0_{R}=0_{R}=0_{R} \odot^{a n n} c=\left(a \odot^{a n n} b\right) \odot^{a n n} c$. We also have $a \odot^{a n n}\left(b \oplus^{a n n} c\right)=0_{R}=$ $0_{R} \oplus 0_{R}=0_{R} \oplus^{a n n} 0_{R}=\left(a \odot^{a n n} b\right) \oplus^{a n n}\left(a \odot^{a n n} c\right)$. Lastly, we have $\left(b \oplus^{a n n} c\right) \odot^{a n n} a=0_{R}=$ $0_{R} \oplus^{a n n} 0_{R}=\left(b \odot^{a n n} a\right) \oplus^{a n n}\left(c \odot^{a n n} a\right)$.
2. Let R be a ring with just two elements: $\{0, a\}$. How many such rings are there? Be sure to prove your answer.
The addition table must be $0+0=0=a+a$, and $0+a=a+0=a$, because 0 is neutral and a must have an inverse. The multiplication table must have $0 \cdot 0=0 \cdot a=a \cdot 0=0$, by theorem 3.5. However we don't know if $a \cdot a=a$ or $a \cdot a=0$. It turns out both are possible; the former is isomorphic to \mathbb{Z}_{2}, while the latter is isomorphic to $\mathbb{Z}_{2}^{\text {ann }}$.
3. Let R be a ring with identity with just three elements: $\{0,1, a\}$. How many such rings are there? Be sure to prove your answer.
Consider first $1+a$. It can't equal 1 , else $a=0$. It can't equal a, else $1=0$. Hence $1+a=0$. Now consider $1+1$. It can't equal 1 , else $1=0$. It can't equal 0 , else $1+1=0=1+a$, so $a=1$. Hence $1+1=a$. Lastly, $a+a$ can't be 0 , else $a+a=0=1+a$ so $a=1$, and $a+a$ can't be a, else $a=0$. Hence $a+a=1$. Putting this all together gives the same addition table as \mathbb{Z}_{3}.
For the multiplication, we know that $0=0 \cdot 0=0 \cdot 0=0 \cdot 1=0 \cdot a=1 \cdot 0=a \cdot 0$. We also know that $1 \cdot 1=1$ and $1 \cdot a=a \cdot 1=a$. The only mystery is $a \cdot a$. However we know that $a=1+1$, so we have $a \cdot a=(1+1) \cdot(1+1)=1+1+1+1=a+a=1$. Hence the multiplication agrees with \mathbb{Z}_{3}; so any such ring must be isomorphic to \mathbb{Z}_{3}.
4. Let R be a ring with identity. Suppose that $a, b \in R$ such that $a, a b$ are both units. Prove that b is a unit. Do not assume that R is commutative.
Since a is a unit, there is some $c \in R$ with $c a=a c=1_{R}$. Similarly, since $a b$ is a unit, there is some $d \in R$ with $d(a b)=(a b) d=1_{R}$. We will prove that $u=d a$ is the reciprocal of b. First, multiply $1_{R}=a b d$ on the left by c, to get $c=c 1_{R}=(c a) b d=1_{R} b d=b d$. Multiply this by a on the right to get $1_{R}=c a=b(d a)=b u$. The other direction is easier; $u b=(d a) b=d(a b)=1_{R}$. Hence b is a unit.
5. Let $R=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Q}\right\}$, the ring of 2×2 matrices over \mathbb{Q}, with operations of the usual matrix addition and matrix multiplication. Prove that every nonzero element of R is either a unit or a zero divisor.
The trick is to find a test that classifies elements, namely the determinant $a d-b c$. Claim 1: If $a d-b c \neq 0$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a unit. Proof: Set $f=a d-b c$ and just compute $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d / f & -b / f \\ -c / f & a / f\end{array}\right)=$
$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)=1_{R}$.
Claim 2: If $a d-b c=0$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a (two-sided) zero divisor. Compute $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=$ $\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=0_{R}$.
6. Let R be a ring. Consider the diagonal map $f: R \rightarrow R \times R$ given by $f: r \mapsto(r, r)$. Prove that f is a (ring) homomorphism.

Let $a, b \in R$. We have $f(a+b)=(a+b, a+b)=(a, a)+(b, b)=f(a)+f(b)$, and $f(a b)=(a b, a b)=(a, a)(b, b)=f(a) f(b)$.
7. Let R, S, T be rings. Prove that the ring $(R \times S) \times T$ is isomorphic to the ring $R \times(S \times T)$.

We need to find a candidate isomorphism, and the natural choice is $f:((x, y), z) \mapsto$ $(x,(y, z))$. First, let's prove it's a homomorphism. Let $x, x^{\prime} \in R, y, y^{\prime} \in S, z, z^{\prime} \in T$, and we have $f\left(((x, y), z)+\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right)=f\left(\left((x, y)+\left(x^{\prime}, y^{\prime}\right), z+z^{\prime}\right)\right)=f\left(\left(\left(x+x^{\prime}, y+y^{\prime}\right), z+z^{\prime}\right)\right)=$ $\left(x+x^{\prime},\left(y+y^{\prime}, z+z^{\prime}\right)\right)=(x,(y, z))+\left(x^{\prime},\left(y^{\prime}, z^{\prime}\right)\right)=f(((x, y), z))+f\left(\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right)$. Similarly, we have $f\left(((x, y), z)\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right)=f\left(\left(\left(x x^{\prime}, y y^{\prime}\right), z z^{\prime}\right)\right)=\left(x x^{\prime},\left(y y^{\prime}, z z^{\prime}\right)\right)=(x,(y, z))\left(x^{\prime},\left(y^{\prime}, z^{\prime}\right)\right)=$ $\left.f(((x, y), z))) f\left(\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right)\right)$.
Now, to prove bijection, we need to prove surjectivity and injectivity. Suppose that $f(((x, y), z)))=$ $f\left(\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right)$). Then $(x,(y, z))=\left(x^{\prime},\left(y^{\prime}, z^{\prime}\right)\right)$ and hence $x=x^{\prime}, y=y^{\prime}, z=z^{\prime}$, so $((x, y), z)=\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)$. This proves one-to-one. Lastly, let $(a,(b, c)) \in R \times(S \times T)$. We see that $((a, b), c) \in(R \times S) \times T$ and $f(((a, b), c))=(a,(b, c))$. This proves onto.
8. Prove that \mathbb{Z}_{9} is not isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, despite having the same number of elements.

Suppose there were some isomorphism $f: \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Note that if $a, b \in \mathbb{Z}_{9}$ with $a b=1_{9}$, then $f(a) f(b)=f(a b)=f\left(1_{9}\right)=1_{3 \times 3}$, so every unit in \mathbb{Z}_{9} must map to a unit in $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. However we found six units in \mathbb{Z}_{9} and only four in $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Thus no such isomorphism can exist. One could consider zero divisors instead.
9. Consider the function $f: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{56}$ given by $f:[x]_{7} \mapsto[8 x]_{56}$. Prove that f is an injective homomorphism, but not an isomorphism.

Let $[x],[y] \in \mathbb{Z}_{7}$. We have $f([x]+[y])=f([x+y])=[8(x+y)]_{56}=[8 x]_{56}+[8 y]_{56}=$ $f([x])+f([y])$, and $f([x][y])=f([x y])=[8(x y)]_{56}=[8(x y)]_{56}+[56(x y)]_{56}=[64(x y)]_{56}=$ $[8 x]_{56}[8 y]_{56}=f([x]) f([y])$. Hence f is a homomorphism. Proving injectivity is as simple as noting the image of f is $\left\{[0]_{56},[8]_{56},[16]_{56},[24]_{56},[32]_{56},[40]_{56},[48]_{56}\right\}$, which has just seven elements. Since $7<56, f$ is not surjective.
10. Consider the ring R, on ground set \mathbb{Z}, with operations \oplus, \odot defined as $a \oplus b=a+b+1$, $a \odot b=a b+a+b$. Prove that R is isomorphic to \mathbb{Z}. (you may assume that R is a ring)

The hard part is finding the right isomorphism, which is $f: R \rightarrow \mathbb{Z}$ given by $f(x)=x+1$. First, let's prove homomorphism. Let $a, b \in \mathbb{Z}$. We have $f(a \oplus b)=f(a+b+1)=a+b+2=$ $(a+1)+(b+1)=f(a)+f(b)$. We also have $f(a \odot b)=f(a b+a+b)=a b+a+b+1=$ $(a+1)(b+1)=f(a) f(b)$. Lastly we prove isomorphism. Suppose that $f(a)=f(b)$. Then $a+1=b+1$, so $a=b$. Hence f is injective. Let $a \in \mathbb{Z}$; we have $f(a-1)=(a-1)+1=a$, so f is surjective.

