MATH 521A: Abstract Algebra
Homework 5 Solutions

Let R be a ring with operations @, ®. Define its annihilation ring R*" as follows. R*™"
has the same ground set as R. We define addition in R*"™ to be the same as in R, i.e.
VYa,b € R a®*"b = a®b. We define multiplication in R as Va,b € R*", a®*"b = Op.
Prove that R*™ is a ring.

Most of the ring axioms don’t involve multiplication, so R**" inherits them from R, since
it has the same addition. Let a,b,c € R*" be arbitrary. We have a @*" (b ®*"" ¢) =
a @™ 0p =0 = 0g @™ ¢ = (a @ b) @™ ¢. We also have a @ (b & ¢) = Og =
0p® 0 =0r B 0r = (a @™ b) & (a ©*" ¢). Lastly, we have (b&*" ¢) @ a =0 =
OR @ann OR — (b ®ann a) @ann (C ®ann Cl).

Let R be a ring with just two elements: {0,a}. How many such rings are there? Be sure to
prove your answer.

The addition table must be 0 +0=0=a + a, and 0 + a = a + 0 = a, because 0 is neutral
and a must have an inverse. The multiplication table must have 0-0=0-a=a-0 =0, by
theorem 3.5. However we don’t know if a-a = a or a-a = 0. It turns out both are possible;
the former is isomorphic to Z,, while the latter is isomorphic to Z§"".

Let R be a ring with identity with just three elements: {0, 1,a}. How many such rings are
there? Be sure to prove your answer.

Consider first 14a. It can’t equal 1, else a = 0. It can’t equal a, else 1 = 0. Hence 14+a = 0.
Now consider 1+ 1. It can’t equal 1, else 1 = 0. It can’t equal 0, else 1 +1=0=1+ a, so
a=1. Hence 1 +1 = a. Lastly, a+a can’t be 0, elsea+a=0=14asoa=1,and a+a
can’t be a, else a = 0. Hence a + a = 1. Putting this all together gives the same addition
table as Zs.

For the multiplication, we know that 0 =0-0=0-0=0-1=0-a=1-0=a-0. We
also know that 1-1=1and 1-a =a-1 = a. The only mystery is a - a. However we know
thata=1+1,sowehavea-a=(14+1)-(1+1)=14+1+1+1=a+a=1. Hence the
multiplication agrees with Zg; so any such ring must be isomorphic to Zs.

Let R be a ring with identity. Suppose that a,b € R such that a, ab are both units. Prove
that b is a unit. Do not assume that R is commutative.

Since a is a unit, there is some ¢ € R with ca = ac = 1i. Similarly, since ab is a unit,
there is some d € R with d(ab) = (ab)d = 1g. We will prove that u = da is the reciprocal
of b. First, multiply 1 = abd on the left by ¢, to get ¢ = clg = (ca)bd = 1gbd = bd.
Multiply this by a on the right to get 1z = ca = b(da) = bu. The other direction is easier;
ub = (da)b = d(ab) = 1g. Hence b is a unit.

Let R = {(%%) :a,b,c,d € Q}, the ring of 2 x 2 matrices over Q, with operations of the
usual matrix addition and matrix multiplication. Prove that every nonzero element of R is
either a unit or a zero divisor.

The trick is to find a test that classifies elements, namely the determinant ad—bc. Claim 1: If

ad—be # 0, then (%) is a unit. Proof: Set f = ad—bc and just compute (¢5) (fz/ff ;l;/ff> =



10.

(6%) = L
Claim 2: If ad — bc = 0, then (

(jlczzb)<gcbi) (adObcad bc) (
Let R be a ring. Consider the diagonal map f: R — R X R given by f : 7+ (r,7). Prove
that f is a (ring) homomorphism.

Let a,b € R. We have f(a+0b) = (a + b,a +b) = (a,a) + (b,b) = f(a) + f(b), and
f(ab) = (ab, ab) = (a,a)(b,b) = f(a)f(b).

Let R, S, T be rings. Prove that the ring (R x S) x T is isomorphic to the ring R x (S x T').

is a (two-sided) zero divisor. Compute (%) (% ?) =

;)
d —Cc a
00) = Or.

We need to find a candidate isomorphism, and the natural choice is f : ((z,v),2) —
(z,(y, z)). First, let’s prove it’s a homomorphism. Let x,2" € R,y,y € S, 2,2 € T, and we

have f(((2,y),2) + (¢, ¢), ) = F(((z,9) + (¢, ¢), 2+ 2')) = F(((z + 2",y +4/), 2 + &) =
(42", (y+y, 2+2") = (2, (y, 2)) + (@', (v, 2)) = f(((2,9), 2) +F(((z', ), 2)). Similarly, we
have f(((z,y), 2)((«",¢'), ) = f(((z2', yy'), 22')) = (w2, (yy/, 227)) = (@, (y, 2)) (2, (¢, &) =
F(((z,9), 2)) (2 y), 2))).

Now, to prove bijection, we need to prove surjectivity and injectivity. Suppose that f(((z,y),2))) =
f(((«",y"),2))). Then (z,(y,z)) = (2/,(y,2)) and hence z = 2';y = ¢,z = 2, so
((x,y),2) = ((«/,y),7). This proves one-to-one. Lastly, let (a,(b,c)) € R x (S x T).

We see that ((a,b),c) € (Rx S) x T and f(((a,b),c)) = (a, (b,c)). This proves onto.

Prove that Zg is not isomorphic to Zs x Zs, despite having the same number of elements.

Suppose there were some isomorphism f : Zg — Z3 X Z3. Note that if a,b € Zg with ab = 1,
then f(a)f(b) = f(ab) = f(1g) = 13«3, S0 every unit in Zg must map to a unit in Zs x Zs.
However we found six units in Zg and only four in Zz x Z3. Thus no such isomorphism can
exist. One could consider zero divisors instead.

Consider the function f : Z; — Zsg given by f : [z]7 — [8x]s6. Prove that f is an injective
homomorphism, but not an isomorphism.

Let [z],[y] € Zz. We have f([z] + [y]) = f([z +y]) = [8(z + y)]s6 = [8z]s6 + [Bylss =
f(z]) + f([y]), and f([2]ly]) = f(lzy]) = [8(zy)]ss = [8(xy)]s6 + [56(xy)]ss = [64(zy)]s6 =
[8x]56[8y]|s6 = f([z]) f([y]). Hence f is a homomorphism. Proving injectivity is as simple as
noting the image of f is {[0]ss, [8]56, [16]56, [24]56, [32]56, [40]56, [48]56 }, which has just seven
elements. Since 7 < 56, f is not surjective.

Consider the ring R, on ground set Z, with operations &, ® defined as a ® b = a + b+ 1,
a®b=ab+ a+b. Prove that R is isomorphic to Z. (you may assume that R is a ring)

The hard part is finding the right isomorphism, which is f : R — Z given by f(x) =z + 1.
First, let’s prove homomorphism. Let a,b € Z. We have f(a®b) = f(a+b+1) =a+b+2 =
(a+1)+ (b+1) = f(a) + f(b). We also have f(a®b) = f(ab+a+b)=ab+a+b+1=
(a+1)(b+1) = f(a)f(b). Lastly we prove isomorphism. Suppose that f(a) = f(b). Then
a+1=>b+1,s0a=>b. Hence f is injective. Let a € Z; we have f(a—1) = (a—1)+ 1 =a,
so f is surjective.



