MATH 521A: Abstract Algebra Homework 5: Due Oct.11

- 1. Let R be a ring with operations \oplus, \odot . Define its annihilation ring \mathbb{R}^{ann} as follows. \mathbb{R}^{ann} has the same ground set as R. We define addition in \mathbb{R}^{ann} to be the same as in R, i.e. $\forall a, b \in \mathbb{R}^{ann}, a \oplus^{ann} b = a \oplus b$. We define multiplication in \mathbb{R}^{ann} as $\forall a, b \in \mathbb{R}^{ann}$, $a \odot^{ann} b = 0_R$. Prove that \mathbb{R}^{ann} is a ring.
- 2. Let R be a ring with just two elements: $\{0, a\}$. How many such rings are there? Be sure to prove your answer.
- 3. * Let R be a ring with identity with just three elements: $\{0, 1, a\}$. How many such rings are there? Be sure to prove your answer.
- 4. Let R be a ring with identity. Suppose that $a, b \in R$ such that a, ab are both units. Prove that b is a unit. Do not assume that R is commutative.
- 5. Let $R = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Q} \}$, the ring of 2×2 matrices over \mathbb{Q} , with operations of the usual matrix addition and matrix multiplication. Prove that every nonzero element of R is either a unit or a zero divisor.
- 6. Let R be a ring. Consider the diagonal map $f : R \to R \times R$ given by $f : r \mapsto (r, r)$. Prove that f is a (ring) homomorphism.
- 7. * Let R, S, T be rings. Prove that the ring $(R \times S) \times T$ is isomorphic to the ring $R \times (S \times T)$.
- 8. Prove that \mathbb{Z}_9 is not isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3$, despite having the same number of elements.
- 9. Consider the function $f : \mathbb{Z}_7 \to \mathbb{Z}_{56}$ given by $f : [x]_7 \mapsto [8x]_{56}$. Prove that f is an injective homomorphism, but not an isomorphism.
- 10. Consider the ring R, on ground set \mathbb{Z} , with operations \oplus , \odot defined as $a \oplus b = a+b+1$, $a \odot b = ab+a+b$. Prove that R is isomorphic to \mathbb{Z} . (you may assume that R is a ring)