MATH 521A: Abstract Algebra

Homework 5: Due Oct. 11

1. Let R be a ring with operations \oplus, \odot. Define its annihilation ring $R^{a n n}$ as follows. $R^{a n n}$ has the same ground set as R. We define addition in $R^{a n n}$ to be the same as in R, i.e. $\forall a, b \in R^{a n n}, a \oplus^{a n n} b=a \oplus b$. We define multiplication in $R^{a n n}$ as $\forall a, b \in R^{a n n}$, $a \odot^{a n n} b=0_{R}$. Prove that $R^{a n n}$ is a ring.
2. Let R be a ring with just two elements: $\{0, a\}$. How many such rings are there? Be sure to prove your answer.
3. * Let R be a ring with identity with just three elements: $\{0,1, a\}$. How many such rings are there? Be sure to prove your answer.
4. Let R be a ring with identity. Suppose that $a, b \in R$ such that $a, a b$ are both units. Prove that b is a unit. Do not assume that R is commutative.
5. Let $R=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Q}\right\}$, the ring of 2×2 matrices over \mathbb{Q}, with operations of the usual matrix addition and matrix multiplication. Prove that every nonzero element of R is either a unit or a zero divisor.
6. Let R be a ring. Consider the diagonal map $f: R \rightarrow R \times R$ given by $f: r \mapsto(r, r)$. Prove that f is a (ring) homomorphism.
7. * Let R, S, T be rings. Prove that the ring $(R \times S) \times T$ is isomorphic to the ring $R \times(S \times T)$.
8. Prove that \mathbb{Z}_{9} is not isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, despite having the same number of elements.
9. Consider the function $f: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{56}$ given by $f:[x]_{7} \mapsto[8 x]_{56}$. Prove that f is an injective homomorphism, but not an isomorphism.
10. Consider the ring R, on ground set \mathbb{Z}, with operations \oplus, \odot defined as $a \oplus b=a+b+1$, $a \odot b=a b+a+b$. Prove that R is isomorphic to \mathbb{Z}. (you may assume that R is a ring)
