MATH 521A: Abstract Algebra

Homework 6 Solutions

1. Let R, S, T be rings, with S, T both subrings of R. Suppose that S has the special property that for every $s \in S$ and every $r \in R$, we have both $s r \in S$ and $r s \in S$. Set $S+T=\{s+t$: $s \in S, t \in T\}$, a subset of R. Prove that $S+T$ is a subring of R.

First, $0_{R} \in S$ and $0_{R} \in T$ (since S, T are subrings), so $0_{R}=0_{R}+0_{R} \in S+T$. Second, let $x, x^{\prime} \in S+T$. Then there are $s, t, s^{\prime}, t^{\prime}$ with $s, s^{\prime} \in S, t, t^{\prime} \in T$, and $x=s+t, x^{\prime}=s+t^{\prime}$. Now, we calculate $x-x^{\prime}=(s+t)-\left(s^{\prime}+t^{\prime}\right)=\left(s-s^{\prime}\right)+\left(t-t^{\prime}\right)$. Since $s-s^{\prime} \in S$ and $t-t^{\prime} \in T$, we have $x-x^{\prime} \in S+T$. Lastly, we calculate $x x^{\prime}=(s+t)\left(s^{\prime}+t^{\prime}\right)=\left(s s^{\prime}+s t^{\prime}+t s^{\prime}\right)+t t^{\prime}$. Since S is a ring, $s s^{\prime} \in S$. Similarly, since T is a ring, $t t^{\prime} \in T$. By our special property, both $s t^{\prime}$ and $t s^{\prime}$ are in S, so the sum $s s^{\prime}+s t^{\prime}+t s^{\prime} \in S$. Hence $x x^{\prime} \in S+T$.
2. Consider the polynomial ring $\mathbb{Z}_{9}[x]$, and the nine elements $\{3 x+0,3 x+1, \ldots, 3 x+8\}$. Determine which are units and which are zero divisors.
Let's first find units, by calculating $(a+3 x)\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=1$. Looking at the constant term, we have $a b_{0} \equiv 1(\bmod 9)$, so a is a unit modulo 9 . This limits us to $a \in\{1,2,4,5,7,8\}$. A bit of trial and error shows that all six are units: $(1+3 x)(1+6 x) \equiv(2+3 x)(5+6 x) \equiv$ $(4+3 x)(7+6 x) \equiv(5+3 x)(2+6 x) \equiv(7+3 x)(4+3 x) \equiv(8+3 x)(8+6 x) \equiv 1(\bmod 9)$.
Now we look for zero divisors, by calculating $(a+3 x)\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$. Looking at the constant term, we have $a b_{0} \equiv 0(\bmod 9)$, so a is a zero divisor modulo 9 . This limits us to $a \in\{0,3,6\}$. All three are zero divisors, as $(a+3 x)(3) \equiv 3 a+0 x \equiv 0(\bmod 9)$.
3. Consider the polynomial ring $\mathbb{Z}_{9}[x]$, and the nine elements $\{0 x+3,1 x+3, \ldots, 8 x+3\}$. Determine which are units and which are zero divisors.
For all nine elements, the constant term is 3 ; the argument in the preceding problem shows that none of these can be units, but some might be zero divisors. We have $(0 x+3)(3) \equiv$ $(3 x+3)(3) \equiv(6 x+3)(3) \equiv 0(\bmod 9)$, so these three are zero divisors. We now prove that the remaining six are neither units nor zero divisors.
Calculate $(3+a x)\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$, and look at the x^{n+1} term. We must have $a b_{n} \equiv 0(\bmod 9)$, so a must be a zero divisor modulo 9 . However, none of $\{1,2,4,5,7,8\}$ are zero divisors modulo 9 , so none of $\{1 x+3,2 x+3,4 x+3,5 x+3,7 x+3,8 x+3\}$ are zero divisors in $\mathbb{Z}_{9}[x]$.
4. Let R be a ring, and $k \in \mathbb{N}$. Define $x^{k} R[x]=\left\{x^{k} f(x): f(x) \in R[x]\right\}$. Prove that $x^{k} R[x]$ is a subring of $R[x]$.
Certainly $x^{k} R[x]$ is a subset of $R[x]$, being polynomials (whose lowest-degree term is at least of degree k). First, $0=x^{k} 0$, so the zero polynomial $0 \in x^{k} R[x]$. Now, let $x^{k} f(x), x^{k} g(x) \in$ $x^{k} R[x]$. We have $x^{k} f(x)-x^{k} g(x)=x^{k}(f(x)-g(x))$. Since $f(x)-g(x) \in R[x], x^{k} f(x)-$ $x^{k} g(x) \in x^{k} R[x]$. Lastly, we have $x^{k} f(x) x^{k} g(x)=x^{k}\left(f(x) x^{k} g(x)\right)$. Since $f(x) x^{k} g(x) \in R[x]$, we have $x^{k} f(x) x^{k} g(x) \in x^{k} R[x]$.
5. Let F be a field. Determine explicitly which elements of $F[x]$ are in the subring $x^{3} F[x]+$ $x^{5} F[x]$. (refer to exercises 1,4)

Exercises 1 and 4 prove that this object is a subring (provided we check the special property for either $x^{3} F[x]$ or $x^{5} F[x]$, which is not too hard to do). Suppose $a(x)=a_{0}+a_{1} x+$ $\cdots+a_{k} x^{k} \in x^{3} F[x]+x^{5} F[x]$. Then there are polynomials $b(x), c(x) \in F[x]$ with $a(x)=$ $x^{3} b(x)+x^{5} c(x)=\left(b_{0} x^{3}+b_{1} x^{4}+\cdots+b_{m} x^{3+m}\right)+\left(c_{0} x^{5}+c_{1} x^{6}+\cdots+c_{n} x^{5+n}\right)=b_{0} x^{3}+b_{1} x^{4}+\cdots$. Note that this proves that $a_{0}=a_{1}=a_{2}=0$, so in particular $a(x) \in x^{3} F[x]$. Hence $x^{3} F[x]+$ $x^{5} F[x] \subseteq x^{3} F[x]$. But also $x^{3} F[x] \subseteq x^{3} F[x]+x^{5} F[x]$, because for each $x^{3} f(x) \in x^{3} F[x]$, we can write $x^{3} f(x)=x^{3} f(x)+x^{5} 0 \in x^{3} F[x]+x^{5} F[x]$. Hence in fact $x^{3} F[x]+x^{5} F[x]=x^{3} F[x]$.
6. Working in $\mathbb{Q}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.

$$
\begin{aligned}
x^{4}-2 x^{2}-3 x-2 & =(x-1)\left(x^{3}+x^{2}+x+1\right)+\left(-2 x^{2}-3 x-1\right) \\
x^{3}+x^{2}+x+1 & =\left(-\frac{1}{2} x+\frac{1}{4}\right)\left(-2 x^{2}-3 x-1\right)+\left(\frac{5}{4} x+\frac{5}{4}\right) \\
-2 x^{2}-3 x-1 & =\left(-\frac{8}{5} x-\frac{4}{5}\right)\left(\frac{5}{4} x+\frac{5}{4}\right)+0
\end{aligned}
$$

Hence $\operatorname{gcd}(a, b)$ is the monic multiple of $\frac{5}{4} x+\frac{5}{4}$, namely $x+1$.
7. Working in $\mathbb{Z}_{2}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.

We first note that $b(x)=x^{4}+x$, and calculate:

$$
\begin{aligned}
x^{4}+x & =(x+1)\left(x^{3}+x^{2}+x+1\right)+(x+1) \\
x^{3}+x^{2}+x+1 & =\left(x^{2}+1\right)(x+1)+0
\end{aligned}
$$

Hence $\operatorname{gcd}(a, b)=x+1$, which is already monic.
8. Working in $\mathbb{Z}_{5}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.

$$
\begin{aligned}
x^{4}-2 x^{2}-3 x-2 & =(x-1)\left(x^{3}+x^{2}+x+1\right)+\left(3 x^{2}+2 x-1\right) \\
x^{3}+x^{2}+x+1 & =(2 x-1)\left(3 x^{2}+2 x-1\right)+0
\end{aligned}
$$

Hence $\operatorname{gcd}(a, b)$ is the monic multiple of $3 x^{2}+2 x-1$, namely $2\left(3 x^{2}+2 x-1\right)=x^{2}+4 x+3$.
9. Working in $\mathbb{Q}[x]$, let $a(x)=x^{2}-5 x+6, b(x)=x^{3}-x^{2}-2 x$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.

$$
\begin{aligned}
x^{3}-x^{2}-2 x & =(x+4)\left(x^{2}-5 x+6\right)+(12 x-24) \\
x^{2}-5 x+6 & =\left(\frac{1}{12} x-\frac{1}{4}\right)(12 x-24)
\end{aligned}
$$

We solve for $12 x-24$, getting $12 x-24=\left(x^{3}-x^{2}-2 x\right)+(-x-4)\left(x^{2}-5 x+6\right)$. Now we normalize, to make the gcd monic, by multiplying by $\frac{1}{12}$, getting $x-2=\left(\frac{1}{12}\right)\left(x^{3}-x^{2}-2 x\right)+$ $\left(\frac{-1}{12} x-\frac{1}{3}\right)\left(x^{2}-5 x+6\right)$. Hence the desired polynomials are $u(x)=\frac{-1}{12} x-\frac{1}{3}$ and $v(x)=\frac{1}{12}$.
10. Working in $\mathbb{Z}_{3}[x]$, let $a(x)=x^{2}-5 x+6, b(x)=x^{3}-x^{2}-2 x$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.
Note that $a(x)=x^{2}+x$ and $b(x)=x^{3}+2 x^{2}+x=\left(x^{2}+x\right)(x+1)$. Hence $\operatorname{gcd}(a, b)=x^{2}+x$, and $x^{2}+x=1\left(x^{2}+x\right)+0\left(x^{3}+2 x^{2}+x\right)$, so we can take $u(x)=1, v(x)=0$.

