MATH 521A: Abstract Algebra
Homework 6 Solutions

1. Let R,S,T be rings, with S, T both subrings of R. Suppose that S has the special property
that for every s € S and every r € R, we have both sr € Sandrs € S. Set S+T = {s+t:
s € S,t € T}, a subset of R. Prove that S + T is a subring of R.

First, 0 € S and Og € T (since S, T are subrings), so 0g = 0g + 0 € S+ T. Second, let
x,x’ € S+T. Then there are s,t,s',t' with s,s' € S, t,t' € T, and x = s+t,2’ = s+t'. Now,
we calculate z — 2’ = (s+t) — (s +t/) =(s— )+ (t—t). Since s—s' € Sand t —t' € T,
we have ¥ — 2/ € S+ T. Lastly, we calculate xz’ = (s +t)(s' +t') = (ss' + st’' +ts') + tt'.
Since S is a ring, ss’ € S. Similarly, since T is a ring, tt’ € T'. By our special property, both
st’ and ts’ are in S, so the sum ss’ + st +ts' € S. Hence za’ € S+ T.

2. Consider the polynomial ring Zg|z|, and the nine elements {3z + 0,3z + 1,...,3z + 8}.
Determine which are units and which are zero divisors.

Let’s first find units, by calculating (a+3z)(by+b1z+- - -+b,2") = 1. Looking at the constant
term, we have aby = 1 (mod 9), so a is a unit modulo 9. This limits us to a € {1,2,4,5,7,8}.
A Dbit of trial and error shows that all six are units: (1 + 3z)(1 4 6z) = (2 + 3x)(5 + 6z) =
(4+32)(7T+62)=(5+32)(2+62) = (7T+3x)(4+32) = (84 3x)(8+ 6x) =1 (mod 9).

Now we look for zero divisors, by calculating (a + 3x)(by + b1z + - - - + b,z™) = 0. Looking
at the constant term, we have aby = 0 (mod 9), so a is a zero divisor modulo 9. This limits
us to a € {0,3,6}. All three are zero divisors, as (a + 3x)(3) = 3a + 0x =0 (mod 9).

3. Consider the polynomial ring Zg[z]|, and the nine elements {0z + 3,1z + 3,...,8z + 3}.
Determine which are units and which are zero divisors.

For all nine elements, the constant term is 3; the argument in the preceding problem shows
that none of these can be units, but some might be zero divisors. We have (0z + 3)(3) =
3z +3)(3) = (64 3)(3) =0 (mod 9), so these three are zero divisors. We now prove that

the remaining six are neither units nor zero divisors.

Calculate (3 + az)(bp + biz + -+ + byz™) = 0, and look at the "™ term. We must have
ab, = 0 (mod 9), so a must be a zero divisor modulo 9. However, none of {1,2,4,5,7,8}
are zero divisors modulo 9, so none of {1z + 3,2z + 3,42 + 3,5x + 3, 7z + 3,8z + 3} are zero
divisors in Zg[z].

4. Let R be aring, and k € N. Define 2*R[z] = {z*f(z) : f(z) € R[z]}. Prove that 2 R[] is
a subring of R|[x].

Certainly z* R[x] is a subset of R[x], being polynomials (whose lowest-degree term is at least
of degree k). First, 0 = 2*0, so the zero polynomial 0 € z*R[z]. Now, let z*f(x),2%g(z) €
¥ R[x]. We have z¥ f(z) — 2%g(x) = 2*(f(x) — g(z)). Since f(z) — g(x) € R[z], 2% f(x) —
zFg(x) € 2FR[x]. Lastly, we have z* f(x)a*g(x) = 2 (f(z)2"g(z)). Since f(z)z*g(z) € R[z],
we have z* f(z)2%g(z) € 2*R[z].

5. Let F be a field. Determine explicitly which elements of F'[z] are in the subring 2®F|[z] +
25 F[z]. (refer to exercises 1,4)



10.

Exercises 1 and 4 prove that this object is a subring (provided we check the special property
for either z*F[x] or 2°F|z], which is not too hard to do). Suppose a(z) = ag + a1T +
<+ apr® € 23F[x] + 2°F[z]. Then there are polynomials b(x),c(x) € Flx] with a(z) =
230(x)+ac(z) = (box+ b1zt ++ - -+ bpa® ™)+ (cor® + 2%+ - -+ ¢, 2%") = boxd byt +- - -
Note that this proves that ag = a; = ay = 0, so in particular a(x) € z3F[z]. Hence 23F|z] +
2°Fx] C 23 Flz]. But also 23 F[z] C 23 F[z] + 2° F[z], because for each z°f(x) € z*F|x], we
can write 23 f(z) = 23 f (z) +2°0 € 23 F[z]+ 2’ F[z]. Hence in fact 23 F[z]+ 2’ F[z] = 23 F[x].

Working in Q[x], find ged(a(x), b(x)), for a(z) = 2° + 2® + 2 + 1, b(x) = 2* — 22 — 3z — 2.
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Hence gcd(a, b) is the monic multiple of %:17 - %, namely x + 1.

Working in Zs[z], find ged(a(z),b(x)), for a(z) = 2® + 2>+ + 1, b(z) = a* — 222 — 3z — 2.
We first note that b(z) = 2* + z, and calculate:
trr=+)@+22+2+ D)+ (2+1)
PP tr+l=@*+D)(@+1)+0
Hence ged(a, b) = x + 1, which is already monic.

Working in Zs[z], find ged(a(z),b(z)), for a(z) = 23 +2? + .+ 1, b(x) = 2* — 22° — 3z — 2.

gt =202 —3r - 2= (v - )@+ 2P+ 2+ 1)+ B2 +22 - 1)
Pttt r+1=022-1)(32°+2r—1)+0

Hence ged(a, b) is the monic multiple of 3z2 + 2z — 1, namely 2(32% + 2z — 1) = 2?4+ 4z + 3.

Working in Q[z], let a(z) = 2* — 5z + 6, b(z) = 2* — 2* — 22. Find u(z),v(z) such that
ged(a(x), b(x)) = a(z)u(x) + b(x)v(x).

2 —2? — 21 = (v +4)(2* — 5 +6) + (122 — 24)
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We solve for 12x — 24, getting 12z — 24 = (2% — 2? — 2x) + (—x — 4)(2* — bx + 6). Now we
normalize, to make the ged monic, by multiplying by 5, getting z —2 = (&) (2 — 2 — 22) +
il 1

(o — 3)( 2? — 5z 4 6). Hence the desired polynomials are u(z) = T3 — 3 and v(z) = .

Working in Zs[z], let a(z) = 2* — 5z + 6, b(x) = 2° — 2% — 22z. Find u(x),v(x) such that
ged(a(x),b(z)) = a(x)u(x) + b(z)v(x).

Note that a(z) = 2? +x and b(z) = 2 +22° + 2 = (2* +z)(x+1). Hence ged(a,b) = 22+,
and 2?2 + z = 1(2* + x) + 0(a® 4+ 22 + z), so we can take u(z) =1, v(z) = 0.



