
MATH 521A: Abstract Algebra
Homework 6 Solutions

1. Let R, S, T be rings, with S, T both subrings of R. Suppose that S has the special property
that for every s ∈ S and every r ∈ R, we have both sr ∈ S and rs ∈ S. Set S +T = {s+ t :
s ∈ S, t ∈ T}, a subset of R. Prove that S + T is a subring of R.

First, 0R ∈ S and 0R ∈ T (since S, T are subrings), so 0R = 0R + 0R ∈ S + T . Second, let
x, x′ ∈ S+T . Then there are s, t, s′, t′ with s, s′ ∈ S, t, t′ ∈ T , and x = s+t, x′ = s+t′. Now,
we calculate x− x′ = (s + t)− (s′ + t′) = (s− s′) + (t− t′). Since s− s′ ∈ S and t− t′ ∈ T ,
we have x − x′ ∈ S + T . Lastly, we calculate xx′ = (s + t)(s′ + t′) = (ss′ + st′ + ts′) + tt′.
Since S is a ring, ss′ ∈ S. Similarly, since T is a ring, tt′ ∈ T . By our special property, both
st′ and ts′ are in S, so the sum ss′ + st′ + ts′ ∈ S. Hence xx′ ∈ S + T .

2. Consider the polynomial ring Z9[x], and the nine elements {3x + 0, 3x + 1, . . . , 3x + 8}.
Determine which are units and which are zero divisors.

Let’s first find units, by calculating (a+3x)(b0+b1x+· · ·+bnx
n) = 1. Looking at the constant

term, we have ab0 ≡ 1 (mod 9), so a is a unit modulo 9. This limits us to a ∈ {1, 2, 4, 5, 7, 8}.
A bit of trial and error shows that all six are units: (1 + 3x)(1 + 6x) ≡ (2 + 3x)(5 + 6x) ≡
(4 + 3x)(7 + 6x) ≡ (5 + 3x)(2 + 6x) ≡ (7 + 3x)(4 + 3x) ≡ (8 + 3x)(8 + 6x) ≡ 1 (mod 9).

Now we look for zero divisors, by calculating (a + 3x)(b0 + b1x + · · · + bnx
n) = 0. Looking

at the constant term, we have ab0 ≡ 0 (mod 9), so a is a zero divisor modulo 9. This limits
us to a ∈ {0, 3, 6}. All three are zero divisors, as (a + 3x)(3) ≡ 3a + 0x ≡ 0 (mod 9).

3. Consider the polynomial ring Z9[x], and the nine elements {0x + 3, 1x + 3, . . . , 8x + 3}.
Determine which are units and which are zero divisors.

For all nine elements, the constant term is 3; the argument in the preceding problem shows
that none of these can be units, but some might be zero divisors. We have (0x + 3)(3) ≡
(3x + 3)(3) ≡ (6x + 3)(3) ≡ 0 (mod 9), so these three are zero divisors. We now prove that
the remaining six are neither units nor zero divisors.

Calculate (3 + ax)(b0 + b1x + · · · + bnx
n) = 0, and look at the xn+1 term. We must have

abn ≡ 0 (mod 9), so a must be a zero divisor modulo 9. However, none of {1, 2, 4, 5, 7, 8}
are zero divisors modulo 9, so none of {1x+ 3, 2x+ 3, 4x+ 3, 5x+ 3, 7x+ 3, 8x+ 3} are zero
divisors in Z9[x].

4. Let R be a ring, and k ∈ N. Define xkR[x] = {xkf(x) : f(x) ∈ R[x]}. Prove that xkR[x] is
a subring of R[x].

Certainly xkR[x] is a subset of R[x], being polynomials (whose lowest-degree term is at least
of degree k). First, 0 = xk0, so the zero polynomial 0 ∈ xkR[x]. Now, let xkf(x), xkg(x) ∈
xkR[x]. We have xkf(x) − xkg(x) = xk(f(x) − g(x)). Since f(x) − g(x) ∈ R[x], xkf(x) −
xkg(x) ∈ xkR[x]. Lastly, we have xkf(x)xkg(x) = xk(f(x)xkg(x)). Since f(x)xkg(x) ∈ R[x],
we have xkf(x)xkg(x) ∈ xkR[x].

5. Let F be a field. Determine explicitly which elements of F [x] are in the subring x3F [x] +
x5F [x]. (refer to exercises 1,4)



Exercises 1 and 4 prove that this object is a subring (provided we check the special property
for either x3F [x] or x5F [x], which is not too hard to do). Suppose a(x) = a0 + a1x +
· · · + akx

k ∈ x3F [x] + x5F [x]. Then there are polynomials b(x), c(x) ∈ F [x] with a(x) =
x3b(x)+x5c(x) = (b0x

3+b1x
4+· · ·+bmx

3+m)+(c0x
5+c1x

6+· · ·+cnx
5+n) = b0x

3+b1x
4+· · · .

Note that this proves that a0 = a1 = a2 = 0, so in particular a(x) ∈ x3F [x]. Hence x3F [x] +
x5F [x] ⊆ x3F [x]. But also x3F [x] ⊆ x3F [x] + x5F [x], because for each x3f(x) ∈ x3F [x], we
can write x3f(x) = x3f(x)+x50 ∈ x3F [x]+x5F [x]. Hence in fact x3F [x]+x5F [x] = x3F [x].

6. Working in Q[x], find gcd(a(x), b(x)), for a(x) = x3 + x2 + x + 1, b(x) = x4 − 2x2 − 3x− 2.

x4 − 2x2 − 3x− 2 = (x− 1)(x3 + x2 + x + 1) + (−2x2 − 3x− 1)

x3 + x2 + x + 1 =

(
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Hence gcd(a, b) is the monic multiple of 5
4
x + 5

4
, namely x + 1.

7. Working in Z2[x], find gcd(a(x), b(x)), for a(x) = x3 + x2 + x + 1, b(x) = x4 − 2x2 − 3x− 2.

We first note that b(x) = x4 + x, and calculate:

x4 + x = (x + 1)(x3 + x2 + x + 1) + (x + 1)

x3 + x2 + x + 1 = (x2 + 1)(x + 1) + 0

Hence gcd(a, b) = x + 1, which is already monic.

8. Working in Z5[x], find gcd(a(x), b(x)), for a(x) = x3 + x2 + x + 1, b(x) = x4 − 2x2 − 3x− 2.

x4 − 2x2 − 3x− 2 = (x− 1)(x3 + x2 + x + 1) + (3x2 + 2x− 1)

x3 + x2 + x + 1 = (2x− 1)(3x2 + 2x− 1) + 0

Hence gcd(a, b) is the monic multiple of 3x2 + 2x− 1, namely 2(3x2 + 2x− 1) = x2 + 4x+ 3.

9. Working in Q[x], let a(x) = x2 − 5x + 6, b(x) = x3 − x2 − 2x. Find u(x), v(x) such that
gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).

x3 − x2 − 2x = (x + 4)(x2 − 5x + 6) + (12x− 24)

x2 − 5x + 6 =

(
1

12
x− 1

4

)
(12x− 24)

We solve for 12x− 24, getting 12x− 24 = (x3 − x2 − 2x) + (−x− 4)(x2 − 5x + 6). Now we
normalize, to make the gcd monic, by multiplying by 1

12
, getting x−2 = ( 1

12
)(x3−x2−2x)+
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3
)(x2 − 5x + 6). Hence the desired polynomials are u(x) = −1
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3
and v(x) = 1

12
.

10. Working in Z3[x], let a(x) = x2 − 5x + 6, b(x) = x3 − x2 − 2x. Find u(x), v(x) such that
gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).

Note that a(x) = x2 +x and b(x) = x3 + 2x2 +x = (x2 +x)(x+ 1). Hence gcd(a, b) = x2 +x,
and x2 + x = 1(x2 + x) + 0(x3 + 2x2 + x), so we can take u(x) = 1, v(x) = 0.


