MATH 521A: Abstract Algebra

Homework 6: Due Oct. 25

1. Let R, S, T be rings, with S, T both subrings of R. Suppose that S has the special property that for every $s \in S$ and every $r \in R$, we have both $s r \in S$ and $r s \in S$. Set $S+T=\{s+t: s \in S, t \in T\}$, a subset of R. Prove that $S+T$ is a subring of R. [This is really a Chapter 3 question.]
2. Consider the polynomial ring $\mathbb{Z}_{9}[x]$, and the nine elements $\{3 x+0,3 x+1, \ldots, 3 x+8\}$. Determine which are units and which are zero divisors.
3. Consider the polynomial ring $\mathbb{Z}_{9}[x]$, and the nine elements $\{0 x+3,1 x+3, \ldots, 8 x+3\}$. Determine which are units and which are zero divisors.
4. Let R be a ring, and $k \in \mathbb{N}$. Define $x^{k} R[x]=\left\{x^{k} f(x): f(x) \in R[x]\right\}$. Prove that $x^{k} R[x]$ is a subring of $R[x]$.
5. Let F be a field. Determine explicitly which elements of $F[x]$ are in the subring $x^{3} F[x]+x^{5} F[x]$. (refer to exercises 1,4)
6. Working in $\mathbb{Q}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.
7. Working in $\mathbb{Z}_{2}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.
8. Working in $\mathbb{Z}_{5}[x]$, find $\operatorname{gcd}(a(x), b(x))$, for $a(x)=x^{3}+x^{2}+x+1, b(x)=x^{4}-2 x^{2}-3 x-2$.
9. Working in $\mathbb{Q}[x]$, let $a(x)=x^{2}-5 x+6, b(x)=x^{3}-x^{2}-2 x$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.
10. Working in $\mathbb{Z}_{3}[x]$, let $a(x)=x^{2}-5 x+6, b(x)=x^{3}-x^{2}-2 x$. Find $u(x), v(x)$ such that $\operatorname{gcd}(a(x), b(x))=a(x) u(x)+b(x) v(x)$.
