MATH 521A: Abstract Algebra Homowork 6: Due Oct 25

- Homework 6: Due Oct. 25
- 1. Let R, S, T be rings, with S, T both subrings of R. Suppose that S has the special property that for every $s \in S$ and every $r \in R$, we have both $sr \in S$ and $rs \in S$. Set $S + T = \{s + t : s \in S, t \in T\}$, a subset of R. Prove that S + T is a subring of R. [This is really a Chapter 3 question.]
- 2. Consider the polynomial ring $\mathbb{Z}_9[x]$, and the nine elements $\{3x+0, 3x+1, \ldots, 3x+8\}$. Determine which are units and which are zero divisors.
- 3. Consider the polynomial ring $\mathbb{Z}_9[x]$, and the nine elements $\{0x+3, 1x+3, \ldots, 8x+3\}$. Determine which are units and which are zero divisors.
- 4. Let R be a ring, and $k \in \mathbb{N}$. Define $x^k R[x] = \{x^k f(x) : f(x) \in R[x]\}$. Prove that $x^k R[x]$ is a subring of R[x].
- 5. Let F be a field. Determine explicitly which elements of F[x] are in the subring $x^3F[x] + x^5F[x]$. (refer to exercises 1,4)
- 6. Working in $\mathbb{Q}[x]$, find gcd(a(x), b(x)), for $a(x) = x^3 + x^2 + x + 1$, $b(x) = x^4 2x^2 3x 2$.
- 7. Working in $\mathbb{Z}_2[x]$, find gcd(a(x), b(x)), for $a(x) = x^3 + x^2 + x + 1$, $b(x) = x^4 2x^2 3x 2x^2 3x^2 -$
- 8. Working in $\mathbb{Z}_5[x]$, find gcd(a(x), b(x)), for $a(x) = x^3 + x^2 + x + 1$, $b(x) = x^4 2x^2 3x 2$.
- 9. Working in $\mathbb{Q}[x]$, let $a(x) = x^2 5x + 6$, $b(x) = x^3 x^2 2x$. Find u(x), v(x) such that gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).
- 10. Working in $\mathbb{Z}_3[x]$, let $a(x) = x^2 5x + 6$, $b(x) = x^3 x^2 2x$. Find u(x), v(x) such that gcd(a(x), b(x)) = a(x)u(x) + b(x)v(x).