MATH 521A: Abstract Algebra

Homework 7 Solutions

1. Consider the ring $\mathbb{Z}_{4}[x]$. Prove that $x+2 x^{k}$ divides x^{3}, for every $k \in \mathbb{N}$.

We have $\left(x+2 x^{k}\right)\left(x^{2}+2 x^{k+1}\right)=x^{3}+4 x^{k+2}+4 x^{2 k+1}=x^{3}$, in $\mathbb{Z}_{4}[x]$. This is really bad for factoring.
2. Find a monic associate of $(1+2 i) x^{3}+x-1$ in $\mathbb{C}[x]$.

Since \mathbb{C} is a field, every nonzero element has a reciprocal. We calculate $\frac{1}{1+2 i}=$ $\frac{1-2 i}{(1+2 i)(1-2 i)}=\frac{1-2 i}{5}$, so we multiply by this to get $x^{3}+\frac{1-2 i}{5} x+\frac{2 i-1}{5}$.
3. For each $a \in \mathbb{Z}_{7}$, factor $x^{2}+a x+1$ into irreducibles in $\mathbb{Z}_{7}[x]$.
$x^{2}+a x+1$ is reducible exactly when it has a root; so for each a we must check each value of $x \in\{0,1, \ldots, 6\}$. This is at most 49 calculations. Alternatively, we can try to combine linear terms in every possible way; however, we must be careful. We have $x^{2}+x+1=(x+3)(x+5), x^{2}+2 x+1=(x+1)^{2}, x^{2}+5 x+1=(x+6)^{2}$, $x^{2}+6 x+1=(x+2)(x+4)$. The others, namely $x^{2}+1, x^{2}+3 x+1, x^{2}+4 x+1$, are irreducible.
4. For each $a, b \in \mathbb{Z}_{3}$, factor $x^{2}+a x+b$ into irreducibles in $\mathbb{Z}_{3}[x]$.

This is similar to the previous problem. We have $x^{2}=(x)^{2}, x^{2}+2=(x+1)(x+2)$, $x^{2}+x=x(x+1), x^{2}+x+1=(x+2)^{2}, x^{2}+2 x=x(x+2), x^{2}+2 x+1=(x+1)^{2}$. The others, namely $x^{2}+1, x^{2}+x+2, x^{2}+2 x+2$, are all irreducible.
5. Find some $f(x) \in \mathbb{Z}_{5}[x]$ that is monic, of degree 4 , reducible, but with no roots.

The only such $f(x)$ are the product of two monic degree- 2 irreducible polynomials. There are ten of them: $x^{2}+2, x^{2}+3, x^{2}+x+1, x^{2}+x+2, x^{2}+2 x+3, x^{2}+2 x+4, x^{2}+$ $3 x+3, x^{2}+3 x+4, x^{2}+4 x+1, x^{2}+4 x+2$. There are $\binom{10}{2}=45$ ways of picking two different ones, such as $f(x)=\left(x^{2}+2\right)\left(x^{2}+x+1\right)$, and 10 ways of picking the square of one, such as $f(x)=\left(x^{2}+2\right)^{2}$. Hence there are $45+10=55$ answers to this question.
6. Factor $x^{7}-x$ as a product of irreducibles in $\mathbb{Z}_{7}[x]$.

By Fermat's Little Theorem, $x^{7} \equiv x(\bmod 7)$, for all integer x. Hence each element of \mathbb{Z}_{7} is a root, so $f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$ divides $x^{7}-x$. Since both polynomials are monic and of degree 7, in fact $f(x)=x^{7}-x$.
7. Let $a, b \in \mathbb{N}$ be distinct, and each greater than 1 . Set $n=a b$. Find a quadratic polynomial in $\mathbb{Z}_{n}[x]$ with at least three distinct roots.
Consider $f(x)=(x-a)(x-b)$. We have $f(a)=f(b)=0$ by construction, and also $f(0)=(-a)(-b)=a b=n=0$. Hence we have three roots, now we show that they are distinct. $0 \neq a$ because $1<a<n$. Similarly, $0 \neq b . a \neq b$ by hypothesis, so $\{0, a, b\}$ are distinct.
8. Let $a, b, c \in F$ with $a \neq 0$. Set $f(x)=a x^{2}+b x+c$. Suppose that $r, s \in F$ are distinct roots of $f(x)$. Prove that $r+s=-a^{-1} b$ and that $r s=a^{-1} c$.

Set $g(x)=(x-r)(x-s)$ By the Factor Theorem twice, we have $g(x) \mid f(x)$; i.e. there is some $h(x) \in F[x]$ with $f(x)=g(x) h(x)$. Since $2=\operatorname{deg}(f)=\operatorname{deg}(g)$, and F is a field, we must have $0=\operatorname{deg}(h)$. But also $f(x)$ has leading coefficient a, while $g(x)$ is monic. Hence $f(x)=a g(x)=a\left(x^{2}-(r+s) x+r s\right)=a x^{2}-(r+s) a+r s a$. Equating coefficients, we see that $b=-(r+s) a$ and $c=r s a$. Multiplying by $-a^{-1}$ and a^{-1} respectively gives the desired equalities.
9. Let $a \in F$ and define $\tau_{a}: F[x] \rightarrow F$ via $\tau_{a}: f(x) \mapsto f(a)$. Prove that τ_{a} is a surjective (ring) homomorphism, but not an isomorphism.
First, let $f(x), g(x) \in F[x]$. We have $\tau_{a}(f(x)+g(x))=\tau_{a}((f+g)(x))=(f+g)(a)=$ $f(a)+g(a)=\tau_{a}(f(x))+\tau_{a}(g(x))$. Also, $\tau_{a}(f(x) g(x))=\tau_{a}((f g)(x))=(f g)(a)=$ $f(a) g(a)=\tau_{a}(f(x)) \tau_{a}(g(x))$. Hence τ_{a} is a ring homomorphism. Let $b \in F$. Setting $f(x)=b$, the constant polynomial, we have $\tau_{a}(f(x))=b$. Hence τ_{a} is surjective. Lastly, we have $\tau_{a}(x-a)=\tau_{a}\left((x-a)^{2}\right)=0$, but $(x-a) \neq(x-a)^{2}$, so τ_{a} is not injective.
10. Set $f(x)=x^{6}+2 x^{4}+3 x^{3}+1$. Find some prime p such that $x-2$ is a divisor of $f(x)$ in $\mathbb{Z}_{p}[x]$. Then factor $f(x)$ into irreducibles in $\mathbb{Z}_{p}[x]$.

If $x-2$ is a divisor, then 2 is a root. We calculate $f(2)=121=11^{2}$. Hence $121 \equiv 0$ $(\bmod p)$. The only possible p is $p=11$. Checking each of $\{0,1, \ldots, 10\}$, we see that 2 is the only root. We now use trial and error (or computing help) to determine that $f(x)=(x-2)\left(x^{2}+3 x-1\right)\left(x^{3}-x^{2}-x+6\right)$. Since there are no other roots, all three terms are irreducible.

