MATH 521A: Abstract Algebra Homework 7 Solutions

1. Consider the ring $\mathbb{Z}_4[x]$. Prove that $x + 2x^k$ divides x^3 , for every $k \in \mathbb{N}$.

We have $(x+2x^k)(x^2+2x^{k+1}) = x^3 + 4x^{k+2} + 4x^{2k+1} = x^3$, in $\mathbb{Z}_4[x]$. This is really bad for factoring.

2. Find a monic associate of $(1+2i)x^3 + x - 1$ in $\mathbb{C}[x]$.

Since \mathbb{C} is a field, every nonzero element has a reciprocal. We calculate $\frac{1}{1+2i} = \frac{1-2i}{(1+2i)(1-2i)} = \frac{1-2i}{5}$, so we multiply by this to get $x^3 + \frac{1-2i}{5}x + \frac{2i-1}{5}$.

3. For each $a \in \mathbb{Z}_7$, factor $x^2 + ax + 1$ into irreducibles in $\mathbb{Z}_7[x]$.

 $x^2 + ax + 1$ is reducible exactly when it has a root; so for each a we must check each value of $x \in \{0, 1, \ldots, 6\}$. This is at most 49 calculations. Alternatively, we can try to combine linear terms in every possible way; however, we must be careful. We have $x^2 + x + 1 = (x + 3)(x + 5)$, $x^2 + 2x + 1 = (x + 1)^2$, $x^2 + 5x + 1 = (x + 6)^2$, $x^2 + 6x + 1 = (x + 2)(x + 4)$. The others, namely $x^2 + 1$, $x^2 + 3x + 1$, $x^2 + 4x + 1$, are irreducible.

4. For each $a, b \in \mathbb{Z}_3$, factor $x^2 + ax + b$ into irreducibles in $\mathbb{Z}_3[x]$.

This is similar to the previous problem. We have $x^2 = (x)^2$, $x^2 + 2 = (x + 1)(x + 2)$, $x^2 + x = x(x + 1)$, $x^2 + x + 1 = (x + 2)^2$, $x^2 + 2x = x(x + 2)$, $x^2 + 2x + 1 = (x + 1)^2$. The others, namely $x^2 + 1$, $x^2 + x + 2$, $x^2 + 2x + 2$, are all irreducible.

5. Find some $f(x) \in \mathbb{Z}_5[x]$ that is monic, of degree 4, reducible, but with no roots.

The only such f(x) are the product of two monic degree-2 irreducible polynomials. There are ten of them: x^2+2 , x^2+3 , x^2+x+1 , x^2+x+2 , x^2+2x+3 , x^2+2x+4 , x^2+3x+3 , x^2+3x+4 , x^2+4x+1 , x^2+4x+2 . There are $\binom{10}{2} = 45$ ways of picking two different ones, such as $f(x) = (x^2+2)(x^2+x+1)$, and 10 ways of picking the square of one, such as $f(x) = (x^2+2)^2$. Hence there are 45+10=55 answers to this question.

6. Factor $x^7 - x$ as a product of irreducibles in $\mathbb{Z}_7[x]$.

By Fermat's Little Theorem, $x^7 \equiv x \pmod{7}$, for all integer x. Hence each element of \mathbb{Z}_7 is a root, so f(x) = x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6) divides $x^7 - x$. Since both polynomials are monic and of degree 7, in fact $f(x) = x^7 - x$.

7. Let $a, b \in \mathbb{N}$ be distinct, and each greater than 1. Set n = ab. Find a quadratic polynomial in $\mathbb{Z}_n[x]$ with at least three distinct roots.

Consider f(x) = (x - a)(x - b). We have f(a) = f(b) = 0 by construction, and also f(0) = (-a)(-b) = ab = n = 0. Hence we have three roots, now we show that they are distinct. $0 \neq a$ because 1 < a < n. Similarly, $0 \neq b$. $a \neq b$ by hypothesis, so $\{0, a, b\}$ are distinct.

8. Let $a, b, c \in F$ with $a \neq 0$. Set $f(x) = ax^2 + bx + c$. Suppose that $r, s \in F$ are distinct roots of f(x). Prove that $r + s = -a^{-1}b$ and that $rs = a^{-1}c$.

Set g(x) = (x - r)(x - s) By the Factor Theorem twice, we have g(x)|f(x); i.e. there is some $h(x) \in F[x]$ with f(x) = g(x)h(x). Since 2 = deg(f) = deg(g), and F is a field, we must have 0 = deg(h). But also f(x) has leading coefficient a, while g(x) is monic. Hence $f(x) = ag(x) = a(x^2 - (r + s)x + rs) = ax^2 - (r + s)a + rsa$. Equating coefficients, we see that b = -(r + s)a and c = rsa. Multiplying by $-a^{-1}$ and a^{-1} respectively gives the desired equalities.

9. Let $a \in F$ and define $\tau_a : F[x] \to F$ via $\tau_a : f(x) \mapsto f(a)$. Prove that τ_a is a surjective (ring) homomorphism, but not an isomorphism.

First, let $f(x), g(x) \in F[x]$. We have $\tau_a(f(x) + g(x)) = \tau_a((f+g)(x)) = (f+g)(a) = f(a) + g(a) = \tau_a(f(x)) + \tau_a(g(x))$. Also, $\tau_a(f(x)g(x)) = \tau_a((fg)(x)) = (fg)(a) = f(a)g(a) = \tau_a(f(x))\tau_a(g(x))$. Hence τ_a is a ring homomorphism. Let $b \in F$. Setting f(x) = b, the constant polynomial, we have $\tau_a(f(x)) = b$. Hence τ_a is surjective. Lastly, we have $\tau_a(x-a) = \tau_a((x-a)^2) = 0$, but $(x-a) \neq (x-a)^2$, so τ_a is not injective.

10. Set $f(x) = x^6 + 2x^4 + 3x^3 + 1$. Find some prime p such that x - 2 is a divisor of f(x) in $\mathbb{Z}_p[x]$. Then factor f(x) into irreducibles in $\mathbb{Z}_p[x]$.

If x - 2 is a divisor, then 2 is a root. We calculate $f(2) = 121 = 11^2$. Hence $121 \equiv 0 \pmod{p}$. The only possible p is p = 11. Checking each of $\{0, 1, \ldots, 10\}$, we see that 2 is the only root. We now use trial and error (or computing help) to determine that $f(x) = (x - 2)(x^2 + 3x - 1)(x^3 - x^2 - x + 6)$. Since there are no other roots, all three terms are irreducible.