MATH 521A: Abstract Algebra

Homework 7: Due Nov. 1

1. Consider the ring $\mathbb{Z}_{4}[x]$. Prove that $x+2 x^{k}$ divides x^{3}, for every $k \in \mathbb{N}$. [This is one reason why we like to restrict to $F[x]$ rather than $R[x]$.]
2. Find a monic associate of $(1+2 i) x^{3}+x-1$ in $\mathbb{C}[x]$.
3. For each $a \in \mathbb{Z}_{7}$, factor $x^{2}+a x+1$ into irreducibles in $\mathbb{Z}_{7}[x]$.
4. For each $a, b \in \mathbb{Z}_{3}$, factor $x^{2}+a x+b$ into irreducibles in $\mathbb{Z}_{3}[x]$.
5. Find some $f(x) \in \mathbb{Z}_{5}[x]$ that is monic, of degree 4 , reducible, but with no roots.
6. Factor $x^{7}-x$ as a product of irreducibles in $\mathbb{Z}_{7}[x]$.
7. Let $a, b \in \mathbb{N}$ be distinct, and each greater than 1 . Set $n=a b$. Find a quadratic polynomial in $\mathbb{Z}_{n}[x]$ with at least three distinct roots.
8. Let $a, b, c \in F$ with $a \neq 0$. Set $f(x)=a x^{2}+b x+c$. Suppose that $r, s \in F$ are distinct roots of $f(x)$. Prove that $r+s=-a^{-1} b$ and that $r s=a^{-1} c$.
9. Let $a \in F$ and define $\tau_{a}: F[x] \rightarrow F$ via $\tau_{a}: f(x) \mapsto f(a)$. Prove that τ_{a} is a surjective (ring) homomorphism, but not an isomorphism.
10. Set $f(x)=x^{6}+2 x^{4}+3 x^{3}+1$. Find some prime p such that $x-2$ is a divisor of $f(x)$ in $\mathbb{Z}_{p}[x]$. Then factor $f(x)$ into irreducibles in $\mathbb{Z}_{p}[x]$.
