MATH 521A: Abstract Algebra

Homework 7: Due Nov. 1

- 1. Consider the ring $\mathbb{Z}_4[x]$. Prove that $x + 2x^k$ divides x^3 , for every $k \in \mathbb{N}$. [This is one reason why we like to restrict to F[x] rather than R[x].]
- 2. Find a monic associate of $(1+2i)x^3 + x 1$ in $\mathbb{C}[x]$.
- 3. For each $a \in \mathbb{Z}_7$, factor $x^2 + ax + 1$ into irreducibles in $\mathbb{Z}_7[x]$.
- 4. For each $a, b \in \mathbb{Z}_3$, factor $x^2 + ax + b$ into irreducibles in $\mathbb{Z}_3[x]$.
- 5. Find some $f(x) \in \mathbb{Z}_5[x]$ that is monic, of degree 4, reducible, but with no roots.
- 6. Factor $x^7 x$ as a product of irreducibles in $\mathbb{Z}_7[x]$.
- 7. Let $a, b \in \mathbb{N}$ be distinct, and each greater than 1. Set n = ab. Find a quadratic polynomial in $\mathbb{Z}_n[x]$ with at least three distinct roots.
- 8. Let $a, b, c \in F$ with $a \neq 0$. Set $f(x) = ax^2 + bx + c$. Suppose that $r, s \in F$ are distinct roots of f(x). Prove that $r + s = -a^{-1}b$ and that $rs = a^{-1}c$.
- 9. Let $a \in F$ and define $\tau_a : F[x] \to F$ via $\tau_a : f(x) \mapsto f(a)$. Prove that τ_a is a surjective (ring) homomorphism, but not an isomorphism.
- 10. Set $f(x) = x^6 + 2x^4 + 3x^3 + 1$. Find some prime p such that x 2 is a divisor of f(x) in $\mathbb{Z}_p[x]$. Then factor f(x) into irreducibles in $\mathbb{Z}_p[x]$.