MATH 521A: Abstract Algebra Homework 8 Solutions

1. * For nonzero polynomial $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, define the *content* of f(x) as $c(f) = \gcd(a_n, a_{n-1}, \ldots, a_1, a_0)$. We call f primitive if c(f) = 1. Let $f(x), g(x) \in \mathbb{Z}[x]$. Suppose that f(x), g(x) are both primitive. Prove that their product f(x)g(x) is also primitive.

Since f, g are primitive, c(f) = c(g) = 1. Suppose, by way of contradiction, that c(fg) > 1. Then some prime p divides each coefficient of fg. Now, p does not divide all the coefficients of f; suppose k is minimal so that $p \nmid a_k$ (and hence $p|a_0, p|a_1, \ldots, p|a_{k-1}$). Set $g(x) = b_n x^n + \cdots b_0$. Similarly, p does not divide all the coefficients of g; suppose j is minimal so that $p \nmid b_j$ (and hence $p|b_0, p|b_1, \ldots, p|a_{j-1}$). The coefficient of x^{k+j} in fg is $b_0a_{k+j}+b_1a_{k+j-1}+\cdots+b_{j-1}a_{k+1}+b_ja_k+b_{j+1}a_{k-1}+\cdots+b_{k+j}a_0$. All the terms to the left of b_ja_k are multiples of p, because b_0, \ldots, b_{j-1} are. All the terms to the right of b_ja_k are multiples of p, because a_0, \ldots, a_{k-1} are. But b_ja_k is not a multiple of p, so the entire sum is not a multiple of p. But p divides every coefficient of fg, so we have a contradiction.

2. For nonzero $f(x), g(x) \in \mathbb{Z}[x]$, prove that c(fg) = c(f)c(g).

We have f(x) = c(f)f'(x), g(x) = c(g)g'(x), where f'(x) and g'(x) have content 1. Now f(x)g(x) = [c(f)c(g)]f'(x)g'(x). We take the content of the product, finding c(fg) = c(f)c(g)c(f'g'). By Problem 1 above, c(f'g') = 1, so c(fg) = c(f)c(g).

3. * Let $f(x) \in \mathbb{Z}[x]$. Suppose that there are non-units $g(x), h(x) \in \mathbb{Q}[x]$ such that f(x) = g(x)h(x). Then there are $g'(x), h'(x) \in \mathbb{Z}[x]$ such that f(x) = g'(x)h'(x) and $\deg g(x) = \deg g'(x)$ (and also $\deg h(x) = \deg h'(x)$).

Let *a* be the lcm of the denominators of the coefficients of *g*, and *b* the lcm of the denominators of the coefficients of *h*. Now, $abf(x), ag(x), bh(x) \in \mathbb{Z}[x]$ with abf = (ag)(bh). By problem 2, c(abf(x)) = c(ag(x))c(bh(x)). But *ab* divides each coefficient of abf(x), so c(abf(x)) = c(f(x))ab. Hence ab|c(ag(x))c(bh(x)). By the lemma below, we can write ab = uv such that u|c(ag(x)) and v|c(bh(x)). Because u|c(ag(x)), u divides each coefficient of ag(x), so we set $g'(x) = \frac{ag(x)}{u}, h'(x) = \frac{bh(x)}{v}$.

Lemma: Let $a, b, c \in \mathbb{Z}$ with a|bc. There are $a', a'' \in \mathbb{Z}$ such that a = a'a'', a'|b, and a''|c. Proof: Use Fundamental Theorem of Arithmetic to write $a = p_1^{a_1} \cdots p_k^{a_k}, b = p_1^{b_1} \cdots p_k^{b_k}, c = p_1^{c_1} \cdots p_k^{b_k}$. Because a|bc, we have $a_i \leq b_i + c_i$ for each $i \in [1, k]$. Now, set $d_i = \min\{b_i, a_i\}$ and $f_i = a_i - d_i$. Using these, we define $a' = p_1^{d_1} \cdots p_k^{d_k}$ and $a'' = p_1^{f_1} \cdots p_k^{f_k}$. We have $d_i + f_i = a_i$ so a = a'a''. By definition of $d_i, d_i \leq b_i$, so a'|b. But also $f_i \leq c_i$ so a''|c.

4. Fix $a \in \mathbb{Z}$ and consider $\phi_a : \mathbb{Z}[x] \to \mathbb{Z}[x]$ given by $\phi_a : f(x) \mapsto f(x-a)$. Prove that if f(x) is reducible then $\phi_a(f(x))$ is reducible.

If f(x) is reducible then it is not the zero polynomial, and there are nonunit $g(x), h(x) \in \mathbb{Z}[x]$ such that f(x) = g(x)h(x). We have $\phi_a(f(x)) = \phi_a(g(x)h(x)) = \phi_a(g(x))\phi_a(h(x)) = g(x-a)h(x-a)$. Now, if g(x) is a constant, then g(x-a) = g(x), so g(x-a) is still

not a unit. If instead g(x) is a non-constant polynomial, then g(x-a) is also a nonconstant polynomial of the same degree, so again is not a unit. Similarly, h(x-a) is not a unit, so $\phi_a(f(x))$ is reducible.

5. Use Eisenstein's criterion (and Problem 4, if necessary) to prove that $x^5 + 5x + 2$ is irreducible in $\mathbb{Q}[x]$.

Set $f(x) = x^5 + 5x + 2$, and consider instead $f(x+3) = x^5 + 15x^4 + 90x^3 + 270x^2 + 410x + 260$. Note that 5 divides each of 15, 90, 270, 410, 260, but $5 \nmid 1$ and $5^2 \nmid 260$. Hence, by Eisenstein's criterion, f(x+3) is irreducible. By Problem 4, since $f(x+3) = \phi_3(f(x))$, also f(x) must be irreducible.

You could also consider $f(x-2) = x^5 - 10x^4 + 40x^3 - 80x^2 + 85x - 40$, also with 5.

6. Fix p prime, and consider the "natural map" $\phi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ given by $\phi_p : a_n x^n + \cdots + a_1 x + a_0 \mapsto [a_n]_p x^n + \cdots + [a_1]_p x + [a_0]_p$. Prove that if $p \nmid a_n$ and f(x) is primitive and reducible, then $\phi_p(f(x))$ is also reducible.

Since f is reducible, there are $g(x), h(x) \in \mathbb{Z}[x]$ with f(x) = g(x)h(x). Since f is primitive, neither g nor h are constants. Neither of the leading coefficients of g, h are multiples of p, since the leading coefficient of f isn't. Hence $\deg(\phi_p(g)) = \deg(g) > 0$ and similarly $\deg(\phi_p(h)) = \deg(h) > 0$. Hence $\phi_p(f) = \phi_p(g)\phi_p(h)$, a product of nonunits.

7. Use Problem 6 to prove that $f(x) = x^3 + 5x + 4$ is irreducible in $\mathbb{Z}[x]$.

Taking p = 3, we get $\phi_3(f) = x^3 + 2x + 1$. Plugging in 0, 1, 2, we get 1 each time (in \mathbb{Z}_3). Hence $\phi_3(f)$ is irreducible in $\mathbb{Z}_p[x]$. Since f(x) is primitive and 3 does not divide the leading coefficient, f(x) is irreducible in $\mathbb{Z}[x]$.

8. Set $f(x) = 3x^3 + 4x^2 + 7x + 2$. Show that this is reducible in $\mathbb{Z}[x]$ but irreducible in $\mathbb{Z}_3[x]$. Does this contradict problem 6?

We have $f(x) = (3x+1)(x^2+x+2)$ in $\mathbb{Z}[x]$, so f is reducible over \mathbb{Z} . However (3x+1) is a unit in $\mathbb{Z}_3[x]$, so this does not prove $\phi_3(f)$ is reducible. In fact, f(0) = 2, f(1) = 1, f(2) = 2. Hence f(x) has no linear factor in $\mathbb{Z}_3[x]$. Since $\deg(f) = 2$ in $\mathbb{Z}_3[x]$, it is irreducible. Problem 6 doesn't apply since p = 3 divides the leading coefficient of f.

9. Factor $x^4 - 25$ in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and $\mathbb{C}[x]$.

Over \mathbb{Q} , this factors as $(x^2-5)(x^2+5)$, two irreducibles (verified by Eisenstein's criterion with p = 5). Over \mathbb{R} , this factors as $(x-\sqrt{5})(x+\sqrt{5})(x^2+5)$, three irreducibles (verified by discriminant $b^2 - 4ac = -20 < 0$). Over \mathbb{C} , this factors as $(x - \sqrt{5})(x + \sqrt{5})(x - \sqrt{5}i)(x + \sqrt{5}i)$, four irreducibles.

10. Factor $x^3 - ix^2 + 5x - 5i$ in $\mathbb{C}[x]$.

Trial and error, and long division in $\mathbb{C}[x]$ is what's needed here. Luckily *i* is a root, so we can divide by (x - i) to get $x^2 + 5$. Hence the polynomial factors as $(x - i)(x - \sqrt{5}i)(x + \sqrt{5}i)$.