MATH 521A: Abstract Algebra

Homework 8: Due Nov. 8

1. * For nonzero polynomial $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, define the content of $f(x)$ as $c(f)=\operatorname{gcd}\left(a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\right)$. We call f primitive if $c(f)=1$. Let $f(x), g(x) \in \mathbb{Z}[x]$. Suppose that $f(x), g(x)$ are both primitive. Prove that their product $f(x) g(x)$ is also primitive.
2. For nonzero $f(x), g(x) \in \mathbb{Z}[x]$, prove that $c(f g)=c(f) c(g)$.
3. * Let $f(x) \in \mathbb{Z}[x]$. Suppose that there are non-units $g(x), h(x) \in \mathbb{Q}[x]$ such that $f(x)=g(x) h(x)$. Then there are $g^{\prime}(x), h^{\prime}(x) \in \mathbb{Z}[x]$ such that $f(x)=g^{\prime}(x) h^{\prime}(x)$ and $\operatorname{deg} g(x)=\operatorname{deg} g^{\prime}(x)$ (and also $\operatorname{deg} h(x)=\operatorname{deg} h^{\prime}(x)$).
Note: $g^{\prime}(x)$ is just another polynomial, not a derivative.
4. Fix $a \in \mathbb{Z}$ and consider $\phi_{a}: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$ given by $\phi_{a}: f(x) \mapsto f(x-a)$. Prove that if $f(x)$ is reducible then $\phi_{a}(f(x))$ is reducible.
5. Use Eisenstein's criterion (and Problem 4, if necessary) to prove that $x^{5}+5 x+2$ is irreducible in $\mathbb{Q}[x]$.
6. Fix p prime, and consider the "natural map" $\phi_{p}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{p}[x]$ given by $\phi_{p}: a_{n} x^{n}+$ $\cdots+a_{1} x+a_{0} \mapsto\left[a_{n}\right]_{p} x^{n}+\cdots+\left[a_{1}\right]_{p} x+\left[a_{0}\right]_{p}$. Prove that if $p \nmid a_{n}$ and $f(x)$ is primitive and reducible, then $\phi_{p}(f(x))$ is also reducible.
7. Use Problem 6 to prove that $f(x)=x^{3}+5 x+4$ is irreducible in $\mathbb{Z}[x]$.
8. Set $f(x)=3 x^{3}+4 x^{2}+7 x+2$. Show that this is reducible in $\mathbb{Z}[x]$ but irreducible in $\mathbb{Z}_{3}[x]$. Does this contradict problem 6?
9. Factor $x^{4}-25$ in $\mathbb{Q}[x], \mathbb{R}[x]$, and $\mathbb{C}[x]$.
10. Factor $x^{3}-i x^{2}+5 x-5 i$ in $\mathbb{C}[x]$.
