MATH 521A: Abstract Algebra

Homework 8: Due Nov. 8

- 1. * For nonzero polynomial $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, define the *content* of f(x) as $c(f) = \gcd(a_n, a_{n-1}, \ldots, a_1, a_0)$. We call f primitive if c(f) = 1. Let $f(x), g(x) \in \mathbb{Z}[x]$. Suppose that f(x), g(x) are both primitive. Prove that their product f(x)g(x) is also primitive.
- 2. For nonzero $f(x), g(x) \in \mathbb{Z}[x]$, prove that c(fg) = c(f)c(g).
- 3. * Let $f(x) \in \mathbb{Z}[x]$. Suppose that there are non-units $g(x), h(x) \in \mathbb{Q}[x]$ such that f(x) = g(x)h(x). Then there are $g'(x), h'(x) \in \mathbb{Z}[x]$ such that f(x) = g'(x)h'(x) and $\deg g(x) = \deg g'(x)$ (and also $\deg h(x) = \deg h'(x)$). Note: g'(x) is just another polynomial, not a derivative.
- 4. Fix $a \in \mathbb{Z}$ and consider $\phi_a : \mathbb{Z}[x] \to \mathbb{Z}[x]$ given by $\phi_a : f(x) \mapsto f(x-a)$. Prove that if f(x) is reducible then $\phi_a(f(x))$ is reducible.
- 5. Use Eisenstein's criterion (and Problem 4, if necessary) to prove that $x^5 + 5x + 2$ is irreducible in $\mathbb{Q}[x]$.
- 6. Fix p prime, and consider the "natural map" $\phi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ given by $\phi_p : a_n x^n + \cdots + a_1 x + a_0 \mapsto [a_n]_p x^n + \cdots + [a_1]_p x + [a_0]_p$. Prove that if $p \nmid a_n$ and f(x) is primitive and reducible, then $\phi_p(f(x))$ is also reducible.
- 7. Use Problem 6 to prove that $f(x) = x^3 + 5x + 4$ is irreducible in $\mathbb{Z}[x]$.
- 8. Set $f(x) = 3x^3 + 4x^2 + 7x + 2$. Show that this is reducible in $\mathbb{Z}[x]$ but irreducible in $\mathbb{Z}_3[x]$. Does this contradict problem 6?
- 9. Factor $x^4 25$ in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and $\mathbb{C}[x]$.
- 10. Factor $x^3 ix^2 + 5x 5i$ in $\mathbb{C}[x]$.