MATH 521B: Abstract Algebra

Preparation for Exam 2

Please recall the following:
$\mathbb{C}^{\times}=\{x \in \mathbb{C}: x \neq 0\}$ and $\mathbb{R}^{\times}=\{x \in \mathbb{R}: x \neq 0\}$ are groups under multiplication. $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ are groups under addition. S_{n} is the symmetric group on [n], and $A_{n} \leq S_{n}$ is the alternating group on [n] that consists of even permutations. $A \times B$ denotes the external direct product $\{(a, b): a \in A, b \in B\}$. If A, B are groups then so is $A \times B$ with group operation $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)$.

1. Set $G=\left\{i d,\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)(24),\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$. Calculate the Cayley table for S_{4} / G.
2. Set $G=\{i d,(12)(34),(13)(24),(14)(23)\}$. Prove that $G \unlhd A_{4}$, and calculate the Cayley table for A_{4} / G.
3. Fix $H=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \leq S_{3}$. Prove that $H \unlhd S_{3}$, and find a familiar group isomorphic to S_{3} / H.

For problems 4-7, let $G=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}, a d \neq 0\right\}$, and $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in \mathbb{R}\right\}$.
4. Prove that $N \unlhd G$.
5. For each $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=x \in G$, determine explicitly all $y \in G$ with $x \equiv y(\bmod N)$.
6. Prove that $N \cong \mathbb{R}$.
7. Prove that $G / N \cong \mathbb{R}^{\times} \times \mathbb{R}^{\times}$.

For problems 8-9, define $U \leq \mathbb{C}^{\times}$via $U=\left\{a+b i: a^{2}+b^{2}=1\right\}$.
8. Prove that $\mathbb{C}^{\times} / U \cong \mathbb{R}^{\times}$.
9. Prove that $\mathbb{R} / \mathbb{Z} \cong U$.
10. Fix a finite group G, with $N \unlhd G$. Set $m=[G: N]$. Prove that $a^{m} \in N$, for all $a \in G$.
11. Fix abelian group G, with $|G|=2 k$, and k odd. Prove that G has exactly one element g with $|g|=2$.
12. Let p be an odd prime, and let G be a nonabelian group with $|G|=2 p$. Prove that G contains an element of order p.
13. Fix abelian group G. Set $K=\{g \in G:|g| \leq 2\}, H=\left\{x^{2}: x \in G\right\}$. Prove that $K \unlhd G, H \unlhd G$, and that $G / K \cong H$.
14. Let $f: G \rightarrow H$ be an onto homomorphism. Suppose $N \unlhd G$. Prove that $f(N) \unlhd H$.
15. Fix groups G, H, and suppose $M \unlhd G$ and $N \unlhd H$. Prove that $(M \times N) \unlhd(G \times H)$.
16. Fix groups G, H, and suppose $M \unlhd G$ and $N \unlhd H$. Prove that $(G / M) \times(H / N) \cong(G \times H) /(M \times N)$.
17. Fix a finite group G, and some $s \in \mathbb{N}$. Set $T=\{K:|K|=s, K \leq G\}$, the set of all subgroups of order s, and assume $|T| \geq 1$. Set $N=\bigcap T$. Prove that $N \unlhd G$.
18. Fix $n \geq 5$. Set $T=\{(r s t)\} \subseteq S_{n}$, the set of all permutations that consist of a single cycle of length three. Prove that $A_{n}=\langle T\rangle$.
19. Fix $n \geq 5$ and $N \unlhd A_{n}$. Set $T=\{(r s t)\} \subseteq S_{n}$, the set of all permutations consisting of just a cycle of length three. If $N \cap T \neq \emptyset$, prove that $N=A_{n}$.
20. Fix a group G, and suppose $N \unlhd G$. Suppose N is maximal normal, i.e. there is no M with $N<M \triangleleft G$. Prove that G / N is simple.

