MATH 521B: Abstract Algebra

Preparation for Exam 2

Please recall the following:

 $\mathbb{C}^{\times} = \{x \in \mathbb{C} : x \neq 0\}$ and $\mathbb{R}^{\times} = \{x \in \mathbb{R} : x \neq 0\}$ are groups under multiplication. $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ are groups under addition. S_n is the symmetric group on [n], and $A_n \leq S_n$ is the alternating group on [n] that consists of even permutations. $A \times B$ denotes the external direct product $\{(a, b) : a \in A, b \in B\}$. If A, B are groups then so is $A \times B$ with group operation (a, b)(a', b') = (aa', bb').

- 1. Set $G = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. Calculate the Cayley table for S_4/G .
- 2. Set $G = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. Prove that $G \leq A_4$, and calculate the Cayley table for A_4/G .
- 3. Fix $H = \langle (1 \ 2 \ 3) \rangle \leq S_3$. Prove that $H \leq S_3$, and find a familiar group isomorphic to S_3/H .

For problems 4-7, let $G = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \}$, and $N = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \}.$

- 4. Prove that $N \leq G$.
- 5. For each $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = x \in G$, determine explicitly all $y \in G$ with $x \equiv y \pmod{N}$.
- 6. Prove that $N \cong \mathbb{R}$.
- 7. Prove that $G/N \cong \mathbb{R}^{\times} \times \mathbb{R}^{\times}$.

For problems 8-9, define $U \leq \mathbb{C}^{\times}$ via $U = \{a + bi : a^2 + b^2 = 1\}.$

- 8. Prove that $\mathbb{C}^{\times}/U \cong \mathbb{R}^{\times}$.
- 9. Prove that $\mathbb{R}/\mathbb{Z} \cong U$.
- 10. Fix a finite group G, with $N \trianglelefteq G$. Set m = [G:N]. Prove that $a^m \in N$, for all $a \in G$.
- 11. Fix abelian group G, with |G| = 2k, and k odd. Prove that G has exactly one element g with |g| = 2.
- 12. Let p be an odd prime, and let G be a nonabelian group with |G| = 2p. Prove that G contains an element of order p.
- 13. Fix abelian group G. Set $K = \{g \in G : |g| \le 2\}$, $H = \{x^2 : x \in G\}$. Prove that $K \trianglelefteq G$, $H \trianglelefteq G$, and that $G/K \cong H$.
- 14. Let $f: G \to H$ be an onto homomorphism. Suppose $N \trianglelefteq G$. Prove that $f(N) \trianglelefteq H$.
- 15. Fix groups G, H, and suppose $M \trianglelefteq G$ and $N \trianglelefteq H$. Prove that $(M \times N) \trianglelefteq (G \times H)$.
- 16. Fix groups G, H, and suppose $M \trianglelefteq G$ and $N \trianglelefteq H$. Prove that $(G/M) \times (H/N) \cong (G \times H)/(M \times N)$.
- 17. Fix a finite group G, and some $s \in \mathbb{N}$. Set $T = \{K : |K| = s, K \leq G\}$, the set of all subgroups of order s, and assume $|T| \geq 1$. Set $N = \bigcap T$. Prove that $N \leq G$.
- 18. Fix $n \ge 5$. Set $T = \{(r \ s \ t)\} \subseteq S_n$, the set of all permutations that consist of a single cycle of length three. Prove that $A_n = \langle T \rangle$.
- 19. Fix $n \ge 5$ and $N \le A_n$. Set $T = \{(r \ s \ t)\} \subseteq S_n$, the set of all permutations consisting of just a cycle of length three. If $N \cap T \ne \emptyset$, prove that $N = A_n$.
- 20. Fix a group G, and suppose $N \leq G$. Suppose N is maximal normal, i.e. there is no M with N < M < G. Prove that G/N is simple.