MATH 521B: Abstract Algebra

Exam 2 Solutions
For the first four problems we fix $G \leq S L(2, \mathbb{R})$, defined as $G=$ $\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}, a d=1\right\}$, and $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in \mathbb{R}\right\}$.

1. Prove that $N \unlhd G$.

Let $x=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G$, and $n=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right) \in N$. We calculate $x n x^{-1}=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}d & -b \\ 0 & a\end{array}\right)=$ $\left(\begin{array}{cc}a d-a b+a^{2} t+a b \\ 0 & d a\end{array}\right)=\left(\begin{array}{cc}1 & a^{2} t \\ 0 & 1\end{array}\right) \in N$. Since $n \in N$ was arbitrary, we conclude that $x N x^{-1} \subseteq$ N. Since $x \in G$ was arbitrary, we can apply our normal theorem to get $N \unlhd G$.
2. For each $x \in G$, determine explicitly its equivalence class $[x]$, modulo N.

Fix $x=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G$. We have $[x]=\left\{y \in G: x y^{-1} \in N\right\}$. For $y=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)$, we calculate $x y^{-1}=\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right)\left(\begin{array}{cc}d^{\prime} & -b^{\prime} \\ 0 & a^{\prime}\end{array}\right)=\left(\begin{array}{cc}a d^{\prime} & -a b^{\prime}+b a^{\prime} \\ 0 & d a^{\prime}\end{array}\right)$. This is in N exactly when $a d^{\prime}=1=d a^{\prime}$, i.e. $a=a^{\prime}, d=d^{\prime}$. Hence we can write explicitly $[x]=\left\{\left(\begin{array}{cc}a & b^{\prime} \\ 0 & d\end{array}\right): b^{\prime} \in \mathbb{R}\right\}$.
3. Prove that $N \cong \mathbb{R}$.

We explicitly write down the isomorphism $f: N \rightarrow \mathbb{R}$ via $f:\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right) \mapsto b$. We check:
Homomorphism: $f\left(\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & b^{\prime} \\ 0 & 1\end{array}\right)\right)=f\left(\left(\begin{array}{cc}1 & b+b^{\prime} \\ 0 & 1\end{array}\right)\right)=b+b^{\prime}=f\left(\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right)\right)+f\left(\left(\begin{array}{cc}1 & b^{\prime} \\ 0 & 1\end{array}\right)\right)$.
One-to-one: Suppose $f\left(\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right)\right)=f\left(\left(\begin{array}{cc}1 & b^{\prime} \\ 0 & 1\end{array}\right)\right)$. Then $b=b^{\prime}$, so $\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & b^{\prime} \\ 0 & 1\end{array}\right)$.
Onto: Let $b \in \mathbb{R}$. Then $f\left(\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right)=b$.
4. Prove that $G / N \cong \mathbb{R}^{\times}$.

We write down $f: G \rightarrow \mathbb{R}^{\times}$via $f:\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \mapsto a$. We want to apply FIT, so we check:
Homomorphism: $f\left(\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right)\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)\right)=f\left(\left(\begin{array}{cc}a a^{\prime} & a b^{\prime}+b d^{\prime} \\ 0 & d d^{\prime}\end{array}\right)\right)=a a^{\prime}=f\left(\left(\begin{array}{lll}a & b \\ 0 & d\end{array}\right)\right) f\left(\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)\right)$.
Onto: Let $a \in \mathbb{R}^{\times}$. Then $f\left(\left(\begin{array}{cc}a & 0 \\ 0 & 1 / a\end{array}\right)\right)=a$.
We calculate $\operatorname{Ker}(f)=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G: f\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=1\right\}=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G: a=1\right\}=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right.$:
$b \in \mathbb{R}\}=N$. We now apply the First Isomorphism Theorem and are done.
5. Fix a group G, with $N \unlhd G$. Suppose that $[G: N]=20$. Prove that $a^{20} \in N$, for all $a \in G$.
Let $a \in G$. Consider $N a \in G / N$. A corollary to Lagrange's theorem tells us $h^{|H|}=i d$, for any h in any group H. Hence $N i d=(N a)^{|G / N|}=(N a)^{[G: N]}=N\left(a^{[G: N]}\right)=N a^{20}$. Thus $\left[a^{20}\right]=[i d]$, and we have proved this implies $a^{20}(i d)^{-1} \in N$, so $a^{20} \in N$.
6. Fix abelian group G, with $|G|=2 k$, and k odd. Prove that G has exactly one element g with $|g|=2$.
We first prove there is at least one such element (this was on the Exam 1 Prep). Pair each element of G with its inverse. The identity is alone in a pair, being its own inverse, as are all elements of order 2 , but nothing else. There are $2 k$ elements altogether, so there must be at least one non-identity element, with order 2 .
Suppose now that g, h each have order 2. Set $K=\langle g, h\rangle=\{i d, g, h, g h\}$. Since G is abelian in fact $K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. By Lagrange's theorem $|K|=4$ must divide $|G|$, but this is a contradiction.
7. Fix groups G, H, and suppose $A \unlhd G$ and $B \unlhd H$. Prove that $(A \times B) \unlhd(G \times H)$.

We first prove that $(A \times B) \leq(G \times H)$, by observing that $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right) \in$ $A \times B$, and $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right) \in A \times B$.
Now, let $(g, h) \in G \times H$. We have $(g, h)(a, b)(g, h)^{-1}=(g, h)(a, b)\left(g^{-1}, h^{-1}\right)=$ $\left(g a g^{-1}, h b h^{-1}\right)$. Since $A \unlhd G$ we have $g A g^{-1} \subseteq A$, so there is some $a^{\prime} \in A$ with $g a g^{-1}=a^{\prime}$. Similarly there is some $b^{\prime} \in B$ with $h b h^{-1}=b^{\prime}$. Hence $\left(g a g^{-1}, h b h^{-1}\right)=$ $\left(a^{\prime}, b^{\prime}\right) \in A \times B$. Since $(a, b) \in A \times B$ was arbitrary, in fact $(g, h)(A \times B)(g, h)^{-1} \subseteq A \times B$. Since $(g, h) \in G \times H$ was arbitrary, by our normal theorem $(A \times B) \unlhd(G \times H)$.
8. Fix a group G. Set $A=\{K:|K|=20, K \leq G\}$, the set of all subgroups of order 20 , and assume that A is nonempty. Set $N=\bigcap_{K \in A} K$. Prove that $N \unlhd G$, assuming $N \leq G$.

Let $g \in G, n \in N, K \in A$, and consider $g n g^{-1}$. The difficult part of this problem is to prove that a generic element, $g n g^{-1}$, is in a generic (and hence every) K.
Set $t=|g|$, and define $L=g^{t-1} K\left(g^{t-1}\right)^{-1}=g^{t-1} K g^{1-t}$. We proved in Homework 7 that, since L is a conjugate of K, they have the same order; i.e. $|L|=|K|=20$. Hence $L \in A$, and since $n \in \bigcap A$, in fact $n \in L$. Hence there is some $k \in K$ such that $n=g^{t-1} k g^{1-t}$. Plugging in, we get $g n g^{-1}=g g^{t-1} \mathrm{~kg}^{1-t} g^{-1}=g^{t} k g^{-t}=k \in K$.
Since $K \in A$ was arbitrary, $g n g^{-1}$ is in all $K \in A$. Hence $g n g^{-1} \in N$. Since $n \in N$ was arbitrary, $g N g^{-1} \subseteq N$. Since $g \in G$ was arbitrary, we apply our normal theorem to conclude that $N \unlhd G$.

