MATH 521B: Abstract Algebra

Exam 3 Solutions

1. Calculate the elementary divisors and invariant factors of $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_{45}$.

We first break up the cyclic groups into prime powers, as $\mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{5}$. We can then read off the elementary divisors as $2,4,3,9,5,5$. Arranging as $\begin{gathered}2 \\ 2 \\ 3 \\ 5 \\ 5\end{gathered}$ gives the invariant factors as 30,180 .
2. Find all nonisomorphic finite abelian groups, of order between 40 and 80 inclusive, of rank 2 . How many are there?
All such groups will be of the form $\mathbb{Z}_{a} \oplus \mathbb{Z}_{a b}$, for $a \geq 2$ and $b \geq 1$. The problem conditions specify that $40 \leq a^{2} b \leq 80$; hence $a<9$ since $9^{2}>80$. All possible values:

$a:$	2	3	4	5	6	7	8
$b:$	$10,11, \ldots, 20$	$5,6,7,8$	$3,4,5$	2,3	2	1	1

Explicitly, these 23 groups are: $\mathbb{Z}_{2} \oplus \mathbb{Z}_{20}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{22}, \ldots, \mathbb{Z}_{2} \oplus \mathbb{Z}_{40}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{15}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{18}, \mathbb{Z}_{3} \oplus$ $\mathbb{Z}_{21}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{24}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{12}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{16}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{20}, \mathbb{Z}_{5} \oplus \mathbb{Z}_{10}, \mathbb{Z}_{5} \oplus \mathbb{Z}_{15}, \mathbb{Z}_{6} \oplus \mathbb{Z}_{12}, \mathbb{Z}_{7} \oplus \mathbb{Z}_{7}, \mathbb{Z}_{8} \oplus \mathbb{Z}_{8}$.
3. Find all nonisomorphic abelian groups, of rank 3, of exponent 27. How many are there?

We have $G \cong \mathbb{Z}_{3^{a}} \oplus \mathbb{Z}_{3^{b}} \oplus \mathbb{Z}_{3^{3}}$, where $1 \leq a \leq b \leq 3$. These have possible values $(a, b) \in\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$, leading to the six groups $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus$ $\mathbb{Z}_{27}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{27}, \mathbb{Z}_{3} \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{27}, \mathbb{Z}_{9} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{27}, \mathbb{Z}_{9} \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{27}, \mathbb{Z}_{27} \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{27}$.
4. For $G=\mathbb{Z}_{6} \oplus \mathbb{Z}_{10}$, find the Davenport constant $D(G)$. Also, find an irreducible with $D(G)$ elements, in the block monoid $\mathcal{B}(G)$.
We first write G in invariant factor form, i.e. $G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{30}$. Since this is rank 2, it is known that $D(G)=D^{\star}(G)=(2-1)+(30-1)+1=31$. An irreducible of that size is $(1,0)^{1}(0,1)^{29}(1,1)^{1}$.
5. For $G=\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$, determine $G(2)$ and $G(3)$ explicitly.

We have $|G|=18=2 \cdot 9$, so $G(2)=\{g \in G:|g|=1$ or 2$\}=\{(0,0),(0,3)\}$. Also, $G(3)=\{g \in G:|g|=1,3$, or 9$\}$, however since $\exp (G)=6$, no elements of order 9 exist. We have $G(3)=\{(0,0),(1,0),(2,0),(0,2),(1,2),(2,2),(0,4),(1,4),(2,4)\}$.
6. Find all nonisomorphic abelian groups, that are generated by at most two elements.

We apply the Fundamental Theorem of Finitely Generated Abelian Groups, and classify these by betti number. If 2 , the only group is $\mathbb{Z} \oplus \mathbb{Z}$. If 1 , the 2 -generated groups are $\mathbb{Z} \oplus \mathbb{Z}_{n}$, for each integer $n \geq 2$; the sole 1 -generated group is \mathbb{Z}. Lastly, if 0 , the 2-generated groups are $\mathbb{Z}_{a} \oplus \mathbb{Z}_{a b}$, for all integers a, b satisfying $a \geq 2$ and $b \geq 1$; the 1 -generated groups are \mathbb{Z}_{n}, for each integer $n \geq 2$; and the 0 -generated (trivial) group is $\{0\}$.
7. Suppose G, H are both finitely generated abelian groups with $G \cong H$. Prove that G, H have the same betti numbers.
By the Fundamental Theorem of Finitely Generated Abelian Groups, $G \cong \mathbb{Z}^{a} \oplus G^{\prime}$, $H \cong \mathbb{Z}^{b} \oplus H^{\prime}$, where a, b are the betti numbers of G, H (respectively), and G^{\prime}, H^{\prime} are torsion. Without loss of generality, suppose that $a>b$. Let $\left\{g_{1}, g_{2}, \ldots, g_{a}\right\}$ be a set of generators for \mathbb{Z}^{a}. Let $\phi:\left(\mathbb{Z}^{a} \oplus G^{\prime}\right) \rightarrow\left(\mathbb{Z}^{b} \oplus H^{\prime}\right)$ be an isomorphism. Then $\left\{\phi\left(g_{1}\right), \ldots, \phi\left(g_{a}\right)\right\}$ are all torsion-free; hence must be elements of \mathbb{Z}^{b}. These are linearly dependent over \mathbb{Q}, since they are elements of the b-dimensional vector space \mathbb{Q}^{b}, i.e. there are rational coefficients to make $\alpha_{1} \phi\left(g_{1}\right)+\cdots+\alpha_{a} \phi\left(g_{a}\right)=0$. We can multiply by the lcm of the denominators to make the coefficients integers. This is a contradiction, as \mathbb{Z}^{b} is free.
8. Let $U=\{x \in \mathbb{C}:|x|=1\}$. This forms an abelian group under multiplication. Find a subgroup $H \leq U$ such that $H \cong \mathbb{Z} \oplus \mathbb{Z}$.

We need two numbers that are algebraically independent from each other, and also from 2π. For example, $\sqrt{2}$ and 1. This gives $g=e^{\sqrt{2} i}, h=e^{i}$. Set $H=\langle g, h\rangle$. We have $g^{a} h^{b}=e^{(a \sqrt{2}+b) i}$. We now prove that H is torsion-free. If $g^{a} h^{b}=1=e^{2 k \pi i}$, then $(a \sqrt{2}+b) i=2 k \pi i$ for some integers a, b, k. If $k \neq 0$, then we divide both sides by $2 k i$, which gives the transcendental number π equal to an algebraic number, which is a contradiction. Hence $k=0$. If $a \neq 0$, we divide by i and rearrange to get $\sqrt{2}=\frac{-b}{a}$, which is again a contradiction since $\sqrt{2}$ is irrational. Hence $a=b=k=0$, and H is torsion-free. By the Fundamental Theorem of Finitely Generated Abelian Groups, the only torsion-free abelian group with two generators is (isomorphic to) $\mathbb{Z} \oplus \mathbb{Z}$.

