MATH 521B: Abstract Algebra

Homework 10: Due Apr. 20

For problems 1-5, find all abelian groups (up to isomorphism) of the specified order. For each group, give its elementary divisors and invariant factors.

- 1. Order 25.
- 2. Order 100.
- 3. Order 500.
- 4. Order 1800.
- 5. Order 2730.

Recall that \mathbb{Z}_n^{\times} is the multiplicative group of units modulo n, while \mathbb{Z}_n is the additive group modulo n.

- 6. Write the multiplication table for \mathbb{Z}_8^{\times} , and use this to prove that $\mathbb{Z}_8^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 7. Let $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, a prime decomposition. Prove that $\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{p_1^{a_1}}^{\times} \times \mathbb{Z}_{p_2^{a_2}}^{\times} \times \cdots \times \mathbb{Z}_{p_k^{a_k}}^{\times}$.

For the following, you may assume the following: (a) $\mathbb{Z}_2^{\times} \cong \mathbb{Z}_1$, $\mathbb{Z}_4^{\times} \cong \mathbb{Z}_2$; (b) For $k \geq 3$, $\mathbb{Z}_{2^k}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{k-2}}$; and (c) For any odd prime p, $\mathbb{Z}_{p^k}^{\times} \cong \mathbb{Z}_t$, for $t = p^k - p^{k-1}$.

- 8. Find the elementary divisors and invariant factors of \mathbb{Z}_{12}^{\times} .
- 9. Find the elementary divisors and invariant factors of \mathbb{Z}_{24}^{\times} .
- 10. Find the elementary divisors and invariant factors of \mathbb{Z}_{56}^{\times} .
- 11. Find the elementary divisors and invariant factors of \mathbb{Z}_{60}^{\times} .
- 12. Find the elementary divisors and invariant factors of \mathbb{Z}_{63}^{\times} .
- 13. Find the elementary divisors and invariant factors of $\mathbb{Z}_{1100}^{\times}$.
- 14. Find the elementary divisors and invariant factors of $\mathbb{Z}_{3600}^{\times}$.
- 15. Prove that \mathbb{Q} , the set of rationals under addition, is not finitely generated. For problems 16-17, let $G = \{(a, b) : a \equiv b \pmod{10}\}$, a subset of $\mathbb{Z} \times \mathbb{Z}$.
- 16. Prove that $G \leq \mathbb{Z} \times \mathbb{Z}$, and that G is torsion-free.
- 17. Prove that $G \cong \mathbb{Z} \times \mathbb{Z}$.