MATH 521B: Abstract Algebra

Homework 4: Due Feb. 16

1. For each of the following five shapes in \mathbb{R}^2 , the isometry group is isomorphic to a subgroup of the permutation group on the vertices. Draw the shape, label the vertices, and give a set of generators for the abovementioned subgroup.

A: scalene triangle B: isosceles (not equilateral) triangle C: equilateral triangle D: rectangle (not square) E: square

- 2. We call a permutation a "cycle" if its cycle notation contains a single cycle (and all other elements are fixed). Prove that disjoint cycles commute.
- 3. Prove that every permutation may be written uniquely as a product of disjoint cycles. We call the number of each cycle length in this unique expression the "cycle structure" of the permutation. For example, $(1\ 2)(3\ 4)$ has two cycles of length 2.

For $a, b \in S_n$, we define $a^b = bab^{-1}$.

- 4. For $a = (1 \ 2 \ 3)(4 \ 5)$, $b = (1 \ 4)(3 \ 5)$, calculate a^b and b^a .
- 5. Suppose $a, b \in S_n$ and $a = (a_1 \ a_2 \ \cdots \ a_k)$, a cycle. Prove that $a^b = (b(a_1) \ b(a_2) \ \cdots b(a_k))$.
- 6. Suppose $a, b \in S_n$. Prove that a and a^b have the same cycle structure.
- 7. Suppose $a, c \in S_n$. Suppose further that a, c have the same cycle structure. Prove that there is some $b \in S_n$ such that $c = a^b$.
- 8. Let $a, c \in S^n$. If there is some $b \in S_n$ such that $c = a^b$, we say that a, c are *conjugate* and write $a \sim c$. Prove that this is an equivalence relation, i.e.

(1) $x \sim x$ (2) if $x \sim y$ then $y \sim x$ (3) if $x \sim y$ and $y \sim z$ then $x \sim z$