MATH 521B: Abstract Algebra

Homework 7: Due Mar. 16

We now define a very important infinite non-abelian group, with operation matrix multiplication. The general linear group is $G L(2, \mathbb{R})=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, a d-b c \neq 0\right\}$.

1. Set $H=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, a d-b c>0\right\}$. Prove that $H \unlhd G L(2, \mathbb{R})$.
2. Set $K=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, a d-b c \in \mathbb{Q}, a d-b c \neq 0\right\}$. Prove that $K \unlhd G L(2, \mathbb{R})$.
3. Set $M=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}, a d \neq 0\right\}$. Prove that $M \nsupseteq G L(2, \mathbb{R})$.
4. Set $S=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, a d-b c=1\right\}$. Prove that $S \unlhd G L(2, \mathbb{R})$. This is called the special linear group and is denoted $S L(2, \mathbb{R})$.
5. Find the center Z of $S L(2, \mathbb{R})$. The quotient group $S L(2, \mathbb{R}) / Z$ is called the projective special linear group and is denoted $P S L(2, \mathbb{R})$. It turns out to be isomorphic to the group of all complex Möbius transformations (aka linear fractional transformations) i.e. $f(z)=\frac{a z+b}{c z+d}$.

We now turn to general groups G.
6. Suppose that $H \leq G$, and let $a \in G$. Prove that $a H a^{-1} \leq G$, and $|H|=\left|a H a^{-1}\right|$.
7. Suppose that $H \leq G$. Suppose that H is the only subgroup of G of order $|H|$. Prove that $H \unlhd G$.
8. Suppose that $N \leq G$. Prove that $N \unlhd G$ if and only if the product of any two right cosets of N is another right coset of N.
9. Suppose that $N \leq G$. Prove that $N \unlhd G$ if and only if every left coset of N is a right coset of N.
10. Prove that $A_{n} \unlhd S_{n}$, where S_{n} is the symmetric group and A_{n} is the alternating group (set of even permutations).

We recall the quaternion group Q, as defined in the previous homework.
11. Set $K=\{1,-1, i,-i\}$. Write down the multiplication table for the quotient group Q / K.
12. Set $H=\{1,-1\}$. Write down the multiplication table for the quotient group Q / H.
13. A group all of whose subgroups are normal is called a Dedekind group. Prove that Q is a non-abelian Dedekind group.

