MATH 521B: Abstract Algebra Homework 7: Due Mar. 16

We now define a very important infinite non-abelian group, with operation matrix multiplication. The general linear group is $GL(2,\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \}.$

1. Set $H = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad - bc > 0 \}$. Prove that $H \trianglelefteq GL(2, \mathbb{R})$.

- 2. Set $K = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad bc \in \mathbb{Q}, ad bc \neq 0 \}$. Prove that $K \leq GL(2, \mathbb{R})$.
- 3. Set $M = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \}$. Prove that $M \not \supseteq GL(2, \mathbb{R})$.
- 4. Set $S = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad bc = 1 \}$. Prove that $S \leq GL(2, \mathbb{R})$. This is called the special linear group and is denoted $SL(2, \mathbb{R})$.
- 5. Find the center Z of $SL(2, \mathbb{R})$. The quotient group $SL(2, \mathbb{R})/Z$ is called the projective special linear group and is denoted $PSL(2, \mathbb{R})$. It turns out to be isomorphic to the group of all complex Möbius transformations (aka linear fractional transformations) i.e. $f(z) = \frac{az+b}{cz+d}$.

We now turn to general groups G.

- 6. Suppose that $H \leq G$, and let $a \in G$. Prove that $aHa^{-1} \leq G$, and $|H| = |aHa^{-1}|$.
- 7. Suppose that $H \leq G$. Suppose that H is the only subgroup of G of order |H|. Prove that $H \leq G$.
- 8. Suppose that $N \leq G$. Prove that $N \leq G$ if and only if the product of any two right cosets of N is another right coset of N.
- 9. Suppose that $N \leq G$. Prove that $N \leq G$ if and only if every left coset of N is a right coset of N.
- 10. Prove that $A_n \leq S_n$, where S_n is the symmetric group and A_n is the alternating group (set of even permutations).

We recall the quaternion group Q, as defined in the previous homework.

- 11. Set $K = \{1, -1, i, -i\}$. Write down the multiplication table for the quotient group Q/K.
- 12. Set $H = \{1, -1\}$. Write down the multiplication table for the quotient group Q/H.
- 13. A group all of whose subgroups are normal is called a Dedekind group. Prove that Q is a non-abelian Dedekind group.