MATH 521B: Abstract Algebra Homework 8: Due Mar. 23

- 1. Set $H = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad bc > 0 \}$. Determine $GL(2, \mathbb{R})/H$, and find some familiar group it is isomorphic to.
- 2. Determine $GL(2,\mathbb{R})/SL(2,\mathbb{R})$, and find some familiar group it is isomorphic to.
- 3. Set $G = \mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Let $S = \langle (5,0), (0,5) \rangle$. Prove that $G/S \cong \mathbb{Z}_5 \times \mathbb{Z}_5$.
- 4. Set $G = \mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Let $N = \langle (5,5) \rangle$. Prove that $G/N \cong \mathbb{Z} \times \mathbb{Z}_5$.
- 5. Set $G = \mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Set $M = \{(x, -x) : x \in \mathbb{Z}\}$, a subset of G. Prove that $M \leq G$, and that $G/M \cong \mathbb{Z}$.
- 6. Suppose $f : G \to H$ is a homomorphism. Prove that f is one-to-one if and only if |Ker(f)| = 1.

For problems 7-9, let G, H be groups, and consider $G^* = \{(a, id) : a \in G\}$, a subgroup of $G \times H$.

- 7. Prove that $G^* \cong G$.
- 8. Prove that $G^* \leq G \times H$.
- 9. Prove that $(G \times H)/G^* \cong H$.

For problems 10-13, for any group G we set $S = \{xyx^{-1}y^{-1} : x, y \in G\}$ and define the commutator subgroup $G' = \langle S \rangle$, the subgroup of G generated by all the elements of S.

- 10. Prove that $G' \trianglelefteq G$.
- 11. Prove that G/G' is abelian.
- 12. If $N \leq G$ and G/N is abelian, prove that $G' \subseteq N$.
- 13. If $M \leq G$ and $G' \subseteq M$, prove that $M \leq G$.