MATH 521B: Abstract Algebra

Homework 8: Due Mar. 23

1. Set $H=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}, a d-b c>0\right\}$. Determine $G L(2, \mathbb{R}) / H$, and find some familiar group it is isomorphic to.
2. Determine $G L(2, \mathbb{R}) / S L(2, \mathbb{R})$, and find some familiar group it is isomorphic to.
3. Set $G=\mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Let $S=\langle(5,0),(0,5)\rangle$. Prove that $G / S \cong \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
4. Set $G=\mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Let $N=\langle(5,5)\rangle$. Prove that $G / N \cong \mathbb{Z} \times \mathbb{Z}_{5}$.
5. Set $G=\mathbb{Z} \times \mathbb{Z}$, where the operation is addition. Set $M=\{(x,-x): x \in \mathbb{Z}\}$, a subset of G. Prove that $M \unlhd G$, and that $G / M \cong \mathbb{Z}$.
6. Suppose $f: G \rightarrow H$ is a homomorphism. Prove that f is one-to-one if and only if $|\operatorname{Ker}(f)|=1$.

For problems 7-9, let G, H be groups, and consider $G^{\star}=\{(a, i d): a \in G\}$, a subgroup of $G \times H$.
7. Prove that $G^{\star} \cong G$.
8. Prove that $G^{\star} \unlhd G \times H$.
9. Prove that $(G \times H) / G^{\star} \cong H$.

For problems 10-13, for any group G we set $S=\left\{x y x^{-1} y^{-1}: x, y \in G\right\}$ and define the commutator subgroup $G^{\prime}=\langle S\rangle$, the subgroup of G generated by all the elements of S.
10. Prove that $G^{\prime} \unlhd G$.
11. Prove that G / G^{\prime} is abelian.
12. If $N \unlhd G$ and G / N is abelian, prove that $G^{\prime} \subseteq N$.
13. If $M \leq G$ and $G^{\prime} \subseteq M$, prove that $M \unlhd G$.

