MATH 521B: Abstract Algebra

Homework 9: Due Apr. 13

1. Let G, H be groups. Prove that $G \times H \cong H \times G$.
2. Let G, H, K be groups. Prove that $(G \times H) \times K \cong G \times(H \times K)$. This associative property justifies writing just $G \times H \times K$.
3. Let G, H be finite groups. Prove that $|G \times H|=|G| \cdot|H|$.
4. Let G, H be groups. Prove that $G \times H$ is abelian if and only if both G and H are abelian.
5. Let $G=G_{1} \oplus G_{2}$, an internal direct sum of finite abelian groups. Prove $G / G_{1} \cong G_{2}$.
6. Let G_{1}, G_{2} be finite groups, and let $a=\left(a_{1}, a_{2}\right) \in G_{1} \times G_{2}$, an external direct product. Prove that $|a|=\operatorname{lcm}\left(\left|a_{1}\right|,\left|a_{2}\right|\right)$.
7. Let $m, n \in \mathbb{N}$, with $\operatorname{gcd}(m, n)=1$. Prove that $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$, an external direct product. This is called the Chinese Remainder Theorem. (hint: build an internal direct sum.)
8. Let $m, n \in \mathbb{N}$, with $\operatorname{gcd}(m, n) \neq 1$. Prove that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is not cyclic.
9. Suppose $G_{1} \unlhd G, G_{2} \unlhd G$, and $G_{1} \cap G_{2}=\{i d\}$. Prove that for every $g_{1} \in G_{1}, g_{2} \in G_{2}$, in fact $g_{1} g_{2}=g_{2} g_{1}$. Note that this holds even if G, G_{1}, G_{2} are each noncommutative.
10. Let $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and set $G_{1}=\langle(0,1)\rangle, G_{2}=\langle(1,0)\rangle, G_{3}=\langle(1,1)\rangle$. Prove that $G=G_{1}+G_{2}+G_{3}$ and $\{(0,0)\}=G_{1} \cap G_{2}=G_{1} \cap G_{3}=G_{2} \cap G_{3}$, and find some $g \in G$ with nonunique representation in $G_{1}+G_{2}+G_{3}$. This problem illustrates that it is not enough to check pairwise disjointness for internal direct sums; G is NOT an internal direct sum of G_{1}, G_{2}, G_{3}.
11. Let G_{1}, G_{2}, \ldots be an infinite set of groups. We can define their direct product $\prod_{i} G_{i}$ as the set of all sequences $\left(a_{1}, a_{2}, \ldots\right)$ such that $a_{i} \in G_{i}$ for all i. We can imbue this with an operation in the natural way: $\left(a_{1}, a_{2}, \ldots\right)\left(b_{1}, b_{2}, \ldots\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots\right)$. Prove that this forms a group.
12. Let G_{1}, G_{2}, \ldots be an infinite set of groups. We can define their direct sum $\sum_{i} G_{i} \subseteq$ $\prod_{i} G_{i}$ as the set of all sequences $\left(a_{1}, a_{2}, \ldots\right)$ such that $a_{i} \in G_{i}$ for all i, with the added property that all but finitely many a_{i} are equal to the identity in G_{i}. Prove that $\left(\sum_{i} G_{i}\right) \unlhd\left(\prod_{i} G_{i}\right)$.
